Yeast Metabolism
&
Fermentation By-Products
Influence on fermentation and product quality
“Brewer’s yeast dissolved in water disintegrates in countless, tiniest beads. Upon adding them to sugared water the magic begins and small animals begin to form. With their tiny suction spouts they eagerly suck up sugar from this solution whereupon immediate and unmistakable digestion sets in, characterised by spontaneous release of excrements from their bowels. They excrete ethyl alcohol from their intestines and carbonic acid from their urinary tract. Come, take a closer look at them. Do you see the incessant stream of a specifically lighter liquid rising from their anus and the gushes of carbonic acid being spurted out from their enormous genitals in short intervals?”

Liebig, Justus v. (1803-1875)
Biochemical Changes during Fermentation

1. Fermentation of carbohydrates

2. Nitrogen in wort

 Assimilation/ Dissimilation

3. Formation of metabolic compounds

 Acids

 • CO₂
 • Organic acids

 Alcohols

 • Ethanol
 • Secondary and tertiary alcohols
 • Higher aliphatic alcohols (HAA)
 • Aromatic alcohols

 Esters

 Aldehydes and Ketones

 Vicinal Diketones (VDK)

 Sulphur-containing compounds
Changes during Fermentation

1. Decrease of pH
2. Decrease of bitter substances
3. Precipitation of nitrogen compounds
4. Decrease in viscosity
5. Decrease in redox potential
6. Changes in colour
Influences on Fermentation

- Aeration of the wort
- Wort concentration
- Fermentation temperature
- Amount of yeast (pitching rate)
- Yeast type
- CO₂-pressure
- Fermentation vessel
- Stirring (agitation)
- Additives (enzymes, minerals...)
Bottom and Top Fermenting Yeast Strains

- **Bottom fermenting yeast**
 - Fermentation at lower temperatures (4-10°C)
 - Forms aggregates at the end of fermentation (flocculation)
 - Ability of degrading raffinose completely

- **Top fermenting yeast**
 - Fermentation at higher temperatures (15-20°C)
 - No ability to ferment raffinose (galactose, glucose, fructose)
 - Produces less aroma components, especially esters (in comparison to bottom fermenting yeasts at same low temperatures)
Fermentation

Glucose

\[
\text{C}_6\text{H}_{12}\text{O}_6 \rightarrow 2 \text{C}_2\text{H}_5\text{OH} + 2\text{CO}_2 + 235\text{kJ/mol}
\]

100g \rightarrow 51.1g + 48.9g

(cell free fermentation)
Crabtree Effect

(Glucose effect, Pasteur counter-effect)

Respiration is partially inhibited by the starting glycolysis with a sugar surplus in the substrate $\rightarrow > 0,1 \%$ (1 g/l)

“High rate of glycolysis reduces the respiration and induces fermentation”
• catabolite repression of respiratory chain enzymes
• slow response – gene level

Overflow metabolism (short-term crabtree effect)

“High rate of glycolysis results in by-product formation from pyruvate”
• different mechanisms
• different functions
• fast response – enzyme regulation level

Source: Teknisk mikrobiologi 2003
Sugar Utilization

Kohlenhydrat-Konzentration [ppm]

Inkubationszeit [h]

Maltose
Maltotriose
Glucose
Fructose
Sucrose
Maltotetraose
Amino Acid Synthesis by Yeast

- Total amino acid content in wort depends on the malting process and on variety and n-content of the used barley

- Amino acids are essential for the nutrition of the yeast
 - good fermentation
 - Good yeast growth
 - good flavour and taste

- High quality fermentation → certain content of amino acids in the wort is necessary

 → Neither a surplus nor a shortage of amino acids is good → increase of fermentation by products
Amino Acids and their Influence on Beer Aroma

<table>
<thead>
<tr>
<th>Precursor amino acid</th>
<th>Strecker-aldehyde</th>
<th>Aroma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucine</td>
<td>3-Methylbutanal</td>
<td>malty</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>2-Methylbutanal</td>
<td>malty</td>
</tr>
<tr>
<td>Methionine</td>
<td>Methional</td>
<td>Cooked potatoes</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phenylacetaldehyde</td>
<td>Honey like, floral</td>
</tr>
</tbody>
</table>
Higher Alcohols [ppm]

<table>
<thead>
<tr>
<th></th>
<th>Normal values</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aliphatic alcohols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Propanol</td>
<td>5 – 33</td>
<td>600</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td>3 – 29</td>
<td>160</td>
</tr>
<tr>
<td>Isoamyl alcohol</td>
<td>27 – 95</td>
<td>110</td>
</tr>
<tr>
<td>2. Aromatic alcohols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Phenyl ethanol</td>
<td>6 – 44</td>
<td>100</td>
</tr>
</tbody>
</table>
Technological Parameters Influencing the Values of HAA

- Yeast strain
- Pitching rate
- Wort aeration
- Fermentation temperature
- FAN
- Pressure
- Biochemical factors
Yeast Strain – HAA Formation

• Differences in formation of HAA are depending on physiological properties
• Variations in enzymatic behaviour
• Top fermenting yeasts normally produce more HAA than bottom fermenting yeast strains → fermentation conditions!!!
Wort Aeration – HAA Formation

• Surplus aeration of wort usually leads to an increased formation of HAA

• Smallest concentration in normal aerated worts:
 – Assumed amounts of oxygen:
 • Superaerated wort (17 mg O₂/l)
 • Normal aerated wort (8 – 9 mg O₂/l)
 • Subaerated wort (up to 1 mg O₂/l)

• Formation of amylalcohols is supported by a higher oxygen saturation of the wort
Effect of Increased Aeration Rates of Wort

- Increased yeast multiplication
- Higher intensity of fermentation
- More acetaldehyde formation
- More higher alcohol formation
- Increased ester formation
- Higher α-acetolactate formation resulting in more diacetyl
- Decreased free short chain fatty acids
Wort Aeration and Higher Alcohols

<table>
<thead>
<tr>
<th>Aeration</th>
<th>8 ppm</th>
<th>12 ppm</th>
<th>0 ppm</th>
<th>Repeated aeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Propanol</td>
<td>8.2</td>
<td>10.5</td>
<td>5.9</td>
<td>22.0</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>12.0</td>
<td>10.9</td>
<td>10.0</td>
<td>15.2</td>
</tr>
<tr>
<td>2-Methylbutanol-(1)</td>
<td>15.5</td>
<td>16.7</td>
<td>7.9</td>
<td>17.6</td>
</tr>
<tr>
<td>3-Methylbutanol-(1)</td>
<td>54.9</td>
<td>57.1</td>
<td>33.7</td>
<td>88.2</td>
</tr>
<tr>
<td>Higher alcohols</td>
<td>90.6</td>
<td>95.2</td>
<td>57.5</td>
<td>143.0</td>
</tr>
</tbody>
</table>
Fermentation Temperature – HAA Formation

• Increase of the fermentation temperature → increase of concentration of the HA

• Impact on the single alcohols differs

• Correlation between temperature and the supply of nutrients:
 – Demand for nitrogen is increased by higher growth promoting temperatures
 → Lack of nitrogen → higher production of HA by the anabolic pathway

• Influence of the temperature is important for the uptake of the amino acids
 – higher fermentation temperatures (12,5 °C) result in increase of HAA

• Increased yield of amylalcohols by increasing temperatures can be reduced by fermentation under pressure (1,8 bar)

• Not possible for n-Propanol and Isobutanol

• Limiting (indicating) factor of fermentation is the Diacetyl
Pressure – HAA Formation

- High influence of pressure on formation of fermentation by-products
- Measures which lead to an excessive carbohydrate- and amino acid metabolism cause an increased formation of metabolites

⇒ More HAA are released into the medium
n-Propanol in Dependence of Temperature and Pressure

![Graph showing the concentration of n-propanol in dependence of fermentation time and temperature or pressure levels. The graph includes data points for 12°C and 20°C with and without pressure.](image-url)
Effect of Pressure on Aroma Compounds

<table>
<thead>
<tr>
<th></th>
<th>Pressure fermentation</th>
<th>No Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde [mg/l]</td>
<td>1,1</td>
<td>0,8</td>
</tr>
<tr>
<td>Ethylacetate [mg/l]</td>
<td>18,0</td>
<td>24,0</td>
</tr>
<tr>
<td>N-propanol [mg/l]</td>
<td>8,0</td>
<td>11,0</td>
</tr>
<tr>
<td>Isobutanol [mg/l]</td>
<td>5</td>
<td>7,0</td>
</tr>
<tr>
<td>Isoamyl acetate [mg/l]</td>
<td>1,1</td>
<td>1,5</td>
</tr>
<tr>
<td>Isoamyl alcohol [mg/l]</td>
<td>31</td>
<td>40,0</td>
</tr>
</tbody>
</table>

MBAA Tech. Quart. 24, 90 – 94, 1987
Formation of Higher Alcohols influenced by FAN

- Free Amino Nitrogen (FAN) may influence content of higher alcohols
- FAN content of wort between 160 and 220 mg/L
- Yeast uptake during fermentation 80 – 120 mg/L
- Remaining in beer 80 – 120 mg/L
Effect of Higher CO$_2$-Pressure During Fermentation

- Decreased yeast multiplication
- Lower intensity of fermentation
- Lower pH-decrease
- Lower loss of bitter substances
- Lower acetaldehyde formation
- Reduced diacetyl formation
- Reduced higher alcohols formation
- Reduced ester formation
- Less H$_2$S formation
Effect of Stirring or Intense Convection

- Higher yeast multiplication
- More intensive fermentation
- Faster pH-decrease
- Precipitation of proteins
- Increased losses of bitter substances
- More acetaldehyde formation
- Faster diacetyl formation and reduction
- More higher alcohol formation
- Increased ester formation
- Increased free fatty acid formation
- Decreased head retention
Influence on Fatty Acid Formation

- Yeast strain
- Pitching rate
- Wort composition
- pH-value
- Wort aeration
- Fermentation temperature
- Maturation and storage
Flavours of Fatty Acids

<table>
<thead>
<tr>
<th>acid/ester</th>
<th>Limit values (mg/l)</th>
<th>Flavour description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capron acid</td>
<td>7,5</td>
<td>sweaty-, fat-, plantoil like</td>
</tr>
<tr>
<td>Capryl acid</td>
<td>7</td>
<td>Fat-, Plantoil-, rancid like</td>
</tr>
<tr>
<td>Caprin acid</td>
<td>5</td>
<td>Fat -, wax-, rancid like</td>
</tr>
<tr>
<td>Undecan acid</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Laurin acid</td>
<td>0,5</td>
<td>-</td>
</tr>
<tr>
<td>Ethyl capronat</td>
<td>0,2</td>
<td>Apple, sweet, fruity-, ester like</td>
</tr>
<tr>
<td>Ethyl caprylat</td>
<td>1,1</td>
<td>Apple, sweet, fruity-, ester like</td>
</tr>
</tbody>
</table>
Influences on Acetaldehyde Formation

• Intermediate product of fermentation ("cellar flavour", "green apple")
• In green beer 20 – 40 ppm → during maturation reduction to Ethanol → final concentration in beer 8 – 10 ppm
• Increased formation:
 – Insufficient aeration
 – Intensive fermentation
 – Warm fermentation
 – Pressure fermentation
 – Higher pitching rate
Important Influences on SO_2^- Formation

- Wort composition (especially original gravity)
- Oxygen content of pitching wort
- Physiological state of yeast
- Fermentation temperature
Sulphur Compounds

<table>
<thead>
<tr>
<th>Compound [ppb]</th>
<th>Pils</th>
<th>Flavour threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphur dioxide</td>
<td>10,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td>5 – 10</td>
<td>5 – 20</td>
</tr>
<tr>
<td>Methyl mercaptan</td>
<td>0.1 – 0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Ethyl mercaptan</td>
<td>0.5 – 1.1</td>
<td>2 – 5</td>
</tr>
<tr>
<td>Dimethyl sulphide</td>
<td>5 – 150</td>
<td>35 – 70</td>
</tr>
<tr>
<td>Diethyl sulphide</td>
<td>0.3 – 10</td>
<td>0.5 – 25</td>
</tr>
<tr>
<td>Dimethyl disulphide</td>
<td>0.01 – 0.5</td>
<td>3 – 50</td>
</tr>
<tr>
<td>3-Methyl-2-buten-1-thiol</td>
<td>-</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Influences on SO$_2$ Formation

<table>
<thead>
<tr>
<th>Increase</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased orig. gravity</td>
<td>High pitching rate</td>
</tr>
<tr>
<td>Increased pH</td>
<td>Airation</td>
</tr>
<tr>
<td>Lack of Methionin</td>
<td>Addition of lipids</td>
</tr>
</tbody>
</table>

Sulfite is able to mask carbonyl groups \rightarrow Increase of flavour stability
Stress Factors for Yeast

<table>
<thead>
<tr>
<th>Fermentation</th>
<th>Crop and pumping</th>
<th>Yeast storage</th>
<th>pitching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>Cold shock</td>
<td>Shear forces</td>
<td>Osmotic conditions</td>
</tr>
<tr>
<td>Nutrition deficit</td>
<td>Shear forces</td>
<td>Cold shock</td>
<td>Free radicals</td>
</tr>
<tr>
<td>Lethal mutations</td>
<td>Anaerobic conditions</td>
<td>Nutrition deficit</td>
<td></td>
</tr>
<tr>
<td>Hydrostatic pressure</td>
<td></td>
<td>Anaerobic conditions</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ludwig, 2003
Influences of Different Fermentation Factors on Yeast (examples)

- **Temperature:** yeast is very sensitive against changes by decreasing temperature
 → temperature shock
 → temperature shock by increasing temperatures
 → increased protein synthesis for certain time

- **Pressure:**
 → increased partial pressure of CO₂ in beer
 inhibition of certain ways of metabolism and also inhibition of degradation processes
 → possibility of higher fermentation temperatures using higher pressure
Influences of Different Fermentation Factors on Yeast (Examples)

- **Extract content**: not too high otherwise problems in fermentation
 - relation sugar content and aminoacids
- **Ethanol**: inhibition of yeast growth, fermentation
decrease of viability and vitality of yeast
- **Oxygen**: 8-10 mg/l, for yeast growth
 - synthesis of unsaturated fatty acids and lipids
pH - Decrease

- Formation of organic acids
- Uptake of phosphates by yeast → decrease of buffer cap.
- Uptake of proteins → decrease of buffer cap.
- CO₂ → no/slight influence
- Acidification of mash increases buffer capacity
- pH decrease → increase of break down of proteins and bittersubstances
Influences on Bitter Substances

<table>
<thead>
<tr>
<th>Increased elimination</th>
<th>Decreased elimination</th>
<th>No/nearly no influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased aeration</td>
<td>Increased pH</td>
<td>Yeast strain</td>
</tr>
<tr>
<td>Intensive main fermentation</td>
<td>Pressure</td>
<td>Pitching rate</td>
</tr>
</tbody>
</table>
Phenolcarboxylic Acids & Phenols

\[
\begin{align*}
\text{p-Cumaric acid} & \rightarrow \text{4-Vinylphenol} \\
\text{Ferulic acid} & \rightarrow \text{4-Vinylguaiacol} \\
\text{Sinapinic acid} & \rightarrow \text{Vanillin-alcohol}
\end{align*}
\]
Viscosity Decrease in Fermentation

- Gum substances are flocculating caused by the increasing alcohol content
- Alcohol is lower in viscosity
- Sugar content is decreasing
Increased Pitching Rate

- Higher intensity of fermentation
- Increased losses of bitter substances
- Faster diacetyl formation but accelerated reduction
- Increased danger of yeast autolysis
- Lower acetaldehyde formation
- Decreased formation of free short chain fatty acids
- Less content of higher alcohols
- Increased formation of esters
- Decreased yeast multiplication
- Decreased head retention
Increasing Fermentation Temperatures

- Higher yeast multiplication
- Accelerated fermentation
- Faster pH-decrease
- Higher losses of bitter substances
- Faster diacetyl formation and reduction
- More higher alcohols
- More ester formation
- Increased yeast autolysis
- More free fatty acid formation
- Decreased head retention
- Less high volatile compounds (H_2S, DMS)
Zinc and Fermentation

• In fermentation zinc acts as a coenzyme → essential part of aldolases, dehydrogenases, polymerases and proteases

• Alcoholdehydrogenase (ADH) of yeast consists of four zinc atoms. For the activation of ADH two zinc atoms are needed

• Zinc also provides protection against attack of proteases
Effect of Zinc Deficits

- Reduced activity of enzymes, e.g. ADH
- Insufficient yeast accession
- Higher values of fermentation by products
- Reduced uptake of maltose

- zinc pool size: 6 – 13 mg/100g dry matter
- zinc concentration in wort >0.15mg/l

activity loss of ADH fermenting with a low concentration of zinc in wort
Yeast’s Mineral Supply during Fermentation

Necessary for **fermentation**: \rightarrow approx. 0.05 ppm Zn$^{2+}$

Necessary for **multiplication**: \rightarrow approx. 0.10 ppm Zn$^{2+}$.

These amounts are always present in worts from well-modified malt.

Dosage in case of lack of zinc: \rightarrow approx. 0.2 mg Zn$^{2+}$/l, leading to a total content of: \rightarrow approx. 0.3 mg Zn$^{2+}$/l.

In concentrations higher than: \rightarrow approx. 0.5 mg Zn$^{2+}$/l zinc could start to **inhibit** yeast activity.