Teaching an Old Bottling Line How Not to Suck (Air)

A CASE STUDY IN IMPROVING QUALITY PARAMETERS ON A 20 YEAR OLD BOTTLING LINE USING DO AND TPO MEASUREMENTS

Background

- Pelican Brewing began bottling in 1997
- Initial QA program for bottled beer packaged air tests using Zahm & Nagel equipment
- Advice from outside experts for packaged air standards:
 - Initial Q/A standard of 0.7 ml of air in the headspace of 22 ounce bottles (1997)
 - This standard gradually changed over time
 - By 2012 the process average standard was halved to 0.35 ml air per headspace.

Packaging Equipment

- Tabletop Little Prince 1997-2004
- 4 head Meheen 2004-2014

Acquisition of small rotary filling line -Early nineties Prospero line **MEB Labeler GAI 9 Head Rinser**

Installed in our Tillamook Brewery **CIMEC** line **Filler/Crowner**

Introducing dissolved oxygen testing to Pelican Brewing

- Dissolved oxygen meter part of the capital plan for our Tillamook brewery
- During construction of our Tillamook brewery, one of the first investments was an Orbisphere 3100 dissolved oxygen meter.
- Final months of full scale operation at the Pacific City brewery, establish dissolved oxygen reference points:
 - Post fermentation
 - Post filter
 - Bright tank

What are good numbers for dissolved oxygen?

- Information about good DO specifications was difficult to find
- We had a new piece of equipment but little information about targets for DO or TPO (total packaged oxygen) that would give good flavor stability for 90-120 days
- Many of the colleagues we contacted were still using packaged air standards, even ones who owned DO meters

DO testing of packaged beer

DO vs TPO

- DO is the amount of oxygen dissolved in your beer, measured in ppb
- TPO is a calculated value which accounts for the measured DO level, and standardizes it across different package sizes.
- Relative oxygen levels for different size packages can be compared directly using TPO values

Quote from Chaz Benedict:

 "TPO is a *normalized* value that can be used to compare the *relative oxygen content* of any package size, but with the *results expressed as a one liter package*."

Industry standards

- There appears to be a very wide range of standards and practices for measuring DO in packaged beer
- We settled on 100 ppb or lower as our target for TPO values
- 500 ppb should be achievable with just about any packaging line and represents a minimum standard

Turning DO measurements into TPO values

- Once a raw DO number is recorded, TPO can be calculated
- We use a spreadsheet provided by the manufacturer
- Inputs values include
 - Raw DO measurement
 - Fill level and corresponding headspace volume
 - Temperature

Procedures

- Pull sample from line as it exits fill head
- Note & record fill head # and fill level
 - Fill level will also determine headspace volume
- 5 minutes in mechanical shaker
- Pierce bottle and push through meter until measured DO stabilizes – about 2 minutes at Pelican
- Record DO & temperature

TPO Calculator

		[1	
	O2 in Headspace of	Equilibrated Packages		
>	Temperature	10°C	Т	283.15 °K
>	Concentration	0.051 mg/l	Water vapor pressure	Water vapor 12.30892029 pressure
>	Volume Liquid	370 ml	R	Liter * bar /(K * 0.08310 mol)
>	Volume Headspace	20 ml		0.005125628
				0.0001
	temp degrees F	53.2	Water density	0.999701336 Water density
			Henry's Law coefficient	Henry's Law 32945.9956 coefficient
	O2 absoulte			53.8963683
	O2 in liquid	0.019 mg	Partial Pressure O2	0.0010 bar
	O2 in Headspace	0.026 mg	n	8.084E-07 mol
	Total O2	0.045 mg	М	32 g/mol
			m	mg O2 in 0.0259 Headspace
	O2 relative			
	O2 in liquid	0.051 mg/l		
	O2 in Headspace	0.070 mg/l		
	Total O2	0.121 mg/l		

Four Variables

- Concentration: DO measurement
- Temperature in Celsius (a Fahrenheit conversion is easy to add)
- Volume of liquid in ml
- Volume of headspace in ml

Getting Started – Our experience

- First runs on our rebuilt CIMEC line showed good packaged air measurements but dreadful DO and TPO numbers
 - Good cap on foam but allowing a lot of DO into the beer in other places
 - Packaged air of 0.25-0.35 ml
- DO out of range: greater than 2000 ppb
- Ran both packaged air and DO/TPO in parallel very little correlation
- DO/TPO is a much more sensitive test

Gradual Improvement

- Took a month to meet our minimum threshold of 500 ppb TPO.
- For our 12 oz bottle and typical fill levels, this equated to a raw DO of about 200 ppb
- 3-4 months later, average performance was about half that
 - Raw DO measurements of around 100
 - TPO between 200-250 ppb

Current Standards - CIMEC

- Normal values are 45-60 ppb raw DO
 - anything above 65-70 ppb is cause for concern and troubleshooting/retesting.
- With typical fill levels and temperatures, this equates to TPO of 107-142 ppb
- Pretty close to our long term goal: at or below 100 ppb
 - a vast improvement from where we began
- Our threshold for troubleshooting of 65-70 ppb roughly corresponds with TPO values of 155-170

Shelf life

• TPO vs storage conditions

- Anything over 150 ppb noticeable on a hoppy beer within 3 weeks of warm storage (65-70 F)
- Anything over 200 ppb noticeable on our Kiwanda Cream Ale after 3 weeks warm storage
- Storage times under refrigeration extend to 4 months before in house triangle testing determines a statistical difference

Practical measures to limit DO pick-up on your packaging line

• Simple and obvious:

- Triclover gaskets don't use the damaged ones
- Don't use clamps that bottom out
- Don't use hoses with loose ends
- Don't use hoses with damaged liners
- Make sure the vacuum pump works properly!
- Extend length of vacuum cycle to get a more complete purge
- Be sure to cap on tight foam!
- Pump seals and/or diaphragms in good shape

Double Pre-Evacuation

- Many of the older machines can be converted from single to double pre-evacuation
- On a simple machine with cam stops for filler valve settings, additional stops can be added for a second pre-evacuation
- We used trial and error to position these setpoints and their timing

Locally made UHMW cam stops, turning single pre-evac into double pre-evac

Phase two DO limiting

 Button valves are a frequent source of DO pickup on older bottling lines

- Double O-ring construction originally
- Our practice is to add a third O-ring on the outboard seal groove to maintain seal within the taper as the button valve is depressed
- Weekly maintenance item
- Vacuum, leveler and snift button valves all get triple o-rings

Button valves – double up the o-rings

Phase 2 continued

• Main filling valve

- Pull valves every 100,000 bottles and inspect/replace all seals/o-rings (for us, every 3 weeks at current pace)
- Shut-off seal (umbrella seal) needs to be exactly to specification
 - Will swell and expand over time and cleaning cycles
 - Results in slower beer flow and inconsistent filling due to variable diameters
- Next seal in the valve is the one which counter-pressurizes the bottle itself
 - Susceptible to denting, creasing, etc which allows leakage of CO2 and inconsistent fills and foam performance

Filler Valve

- Original design used a single o-ring
- Retrofitted with additional internal o-rings behind each bushing
 - Gives the valve 3 seal points instead of one
 - Needs tear-down/inspection every 6 months
 - Ensure replacement before oxygen or cleanability issues develop
 - Single o-ring setup required quarterly teardowns with reduced DO performance and cleanability overall

Front sleeve of filler valve

Back sleeve of filler valve

Phase three DO control

- Tower seals replaced every 6 months or 800,000 bottles
 - Primary purpose is to isolate the following line sets:
 - Beer supply to filling bowl
 - CO2 supply to bowl headspace
 - CO2 supply to leveler function
 - Keep vacuum away from everything else
 - These are large rotating seals, crucial to overall operation of the machine and the DO of your packaged beer

Phase three, cont.

• Lift cylinders

- Grease before every run
- We've altered the design of the lift cylinder on our machine
 - Machines from this era often changed lift cylinder design on a monthly or even weekly basis in ongoing attempts to build reliable machines
 - On an older machine such as ours, lift cylinders are frequently not available or have already been retrofitted
 - You are kind of on your own to get this component working well
 - Utilize your local machine shop! Become friends.
 - Find a Harley dealer. Stainless exhaust pipe for a Harley fits our lift cylinders perfectly

Lift cylinders continued

• Our machine tends to develop wear points that score the lift cylinders

- Loss of compressed air and excessive air consumption
- Irregular, uneven lifting
- Inconsistent pressure on neck seals
- Excessive wear on neck seals due to greater and uneven pressure
- All resulting in intermittent and uneven DO pickup across the fill valves not predictable

Operating parameters

- Common advice for operating fillers of this design and vintage is a bowl headspace pressure of 25-35 psi and run speed of 25 bpm
- Our experience is that we get much better results at 18 psi
 - We can't quite explain why this is the case, but 12 months of operating results has shown it to be true for our machine
 - We run at about 31-32 bottles per minute with 8 fill heads
 - Not too bad for an old machine ...

Operating parameters, cont.

• CO2 purge/sparge before bottle enters fill valve for filling cycle

- Even after 2 vacuums, there is slight residual atmosphere remaining in the bottle which eventually ends up in the headspace of the filler bowl
- Pre-sparging with CO2 helps with this
- Reduces the accumulated oxygen content in the bowl headspace

Operating parameters

- Vent bowl headspace through separate valve on top of bowl
- Continuously flush bowl headspace with new CO2 to keep oxygen level low
- Maintain continuous pressure levels
 - Downside it costs extra CO2 but offset by dramatically improved packaged beer quality over duration of packaging run
 - Without doing this we see raw DO levels increase by 100 ppb over the course of a 5 hour packaging run

Conclusion

- Take care of the basic issues
 - Use good clamps, gaskets, hoses, etc
- Maintenance is key
 - Internal seals & o-rings
- Experiment with retrofitting based on operational experience
- Experiment with operating parameters: run speed, bowl pressure, bowl venting, etc

• Invest in a DO meter and use it for every packaging run

 Results from DO testing and TPO calculations will guide maintenance intervals, efficacy of retrofits/redesign work and different operating parameters