Teaching an Old Bottling Line
How Not to Suck (Air)

A CASE STUDY IN IMPROVING QUALITY PARAMETERS ON A 20 YEAR OLD BOTTLING LINE USING DO AND TPO MEASUREMENTS
Pelican Brewing began bottling in 1997
Initial QA program for bottled beer - packaged air tests using Zahm & Nagel equipment
Advice from outside experts for packaged air standards:
- Initial Q/A standard of 0.7 ml of air in the headspace of 22 ounce bottles (1997)
- This standard gradually changed over time
- By 2012 the process average standard was halved to 0.35 ml air per headspace.
Packaging Equipment

- Tabletop Little Prince 1997-2004
- 4 head Meheen 2004-2014
Acquisition of small rotary filling line - Early nineties Prospero line

MEB Labeler

GAI 9 Head Rinser
Other pieces ...

Conveyor

Infeed table
Installed in our Tillamook Brewery

CIMEC line

Filler/Crowner
Introducing dissolved oxygen testing to Pelican Brewing

- Dissolved oxygen meter - part of the capital plan for our Tillamook brewery
- During construction of our Tillamook brewery, one of the first investments was an Orbisphere 3100 dissolved oxygen meter.
- Final months of full scale operation at the Pacific City brewery, establish dissolved oxygen reference points:
 - Post fermentation
 - Post filter
 - Bright tank
What are good numbers for dissolved oxygen?

- Information about good DO specifications was difficult to find.
- We had a new piece of equipment but little information about targets for DO or TPO (total packaged oxygen) that would give good flavor stability for 90-120 days.
- Many of the colleagues we contacted were still using packaged air standards, even ones who owned DO meters.
DO testing of packaged beer
DO vs TPO

- DO is the amount of oxygen dissolved in your beer, measured in ppb.
- TPO is a calculated value which accounts for the measured DO level, and standardizes it across different package sizes.
- Relative oxygen levels for different size packages can be compared directly using TPO values.
Quote from Chaz Benedict:

"TPO is a **normalized** value that can be used to compare the **relative oxygen content** of any package size, but with the **results expressed as a one liter package**."
Industry standards

- There appears to be a very wide range of standards and practices for measuring DO in packaged beer
- We settled on 100 ppb or lower as our target for TPO values
- 500 ppb should be achievable with just about any packaging line and represents a minimum standard
Turning DO measurements into TPO values

- Once a raw DO number is recorded, TPO can be calculated.
- We use a spreadsheet provided by the manufacturer.
- Inputs values include:
 - Raw DO measurement
 - Fill level and corresponding headspace volume
 - Temperature
Procedures

- Pull sample from line as it exits fill head
- Note & record fill head # and fill level
 - Fill level will also determine headspace volume
- 5 minutes in mechanical shaker
- Pierce bottle and push through meter until measured
- DO stabilizes – about 2 minutes at Pelican
- Record DO & temperature
Wrist action shaker
TPO Calculator

O2 in Headspace of Equilibrated Packages

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>10 °C</td>
<td></td>
<td>T</td>
<td>283.15 °K</td>
</tr>
<tr>
<td>Concentration</td>
<td>0.051 mg/l</td>
<td></td>
<td>Water vapor pressure</td>
<td>12.30892029</td>
</tr>
<tr>
<td>Volume Liquid</td>
<td>370 ml</td>
<td></td>
<td>R</td>
<td>0.08310</td>
</tr>
<tr>
<td>Volume Headspace</td>
<td>20 ml</td>
<td></td>
<td></td>
<td>0.005125628</td>
</tr>
<tr>
<td>temp degrees F</td>
<td>53.2</td>
<td></td>
<td>Water density</td>
<td>0.999701336</td>
</tr>
<tr>
<td>O2 absolute</td>
<td></td>
<td></td>
<td>Henry's Law coefficient</td>
<td>32945.9956</td>
</tr>
<tr>
<td>O2 in liquid</td>
<td>0.019 mg</td>
<td>Partial Pressure O2</td>
<td>0.0010 bar</td>
<td></td>
</tr>
<tr>
<td>O2 in Headspace</td>
<td>0.026 mg</td>
<td>n</td>
<td>8.084E-07 mol</td>
<td></td>
</tr>
<tr>
<td>Total O2</td>
<td>0.045 mg</td>
<td>M</td>
<td>32 g/mol</td>
<td></td>
</tr>
</tbody>
</table>

O2 relative

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O2 in liquid</td>
<td>0.051 mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 in Headspace</td>
<td>0.070 mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total O2</td>
<td>0.121 mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Four Variables

- Concentration: DO measurement
- Temperature in Celsius (a Fahrenheit conversion is easy to add)
- Volume of liquid in ml
- Volume of headspace in ml
Getting Started – Our experience

- First runs on our rebuilt CIMEC line showed good packaged air measurements but dreadful DO and TPO numbers
 - Good cap on foam but allowing a lot of DO into the beer in other places
 - Packaged air of 0.25-0.35 ml
- DO out of range: greater than 2000 ppb
- Ran both packaged air and DO/TPO in parallel – very little correlation
- DO/TPO is a much more sensitive test
Gradual Improvement

- Took a month to meet our minimum threshold of 500 ppb TPO.
- For our 12 oz bottle and typical fill levels, this equated to a raw DO of about 200 ppb.
- 3-4 months later, average performance was about half that:
 - Raw DO measurements of around 100
 - TPO between 200-250 ppb
Normal values are 45-60 ppb raw DO
 - anything above 65-70 ppb is cause for concern and troubleshooting/retesting.

With typical fill levels and temperatures, this equates to TPO of 107-142 ppb

Pretty close to our long term goal: at or below 100 ppb
 - a vast improvement from where we began

Our threshold for troubleshooting of 65-70 ppb roughly corresponds with TPO values of 155-170
Shelf life

- **TPO vs storage conditions**
 - Anything over 150 ppb noticeable on a hoppy beer within 3 weeks of warm storage (65-70 F)
 - Anything over 200 ppb noticeable on our Kiwanda Cream Ale after 3 weeks warm storage
 - Storage times under refrigeration extend to 4 months before in house triangle testing determines a statistical difference
Practical measures to limit DO pick-up on your packaging line

- **Simple and obvious:**
 - Triclover gaskets – don’t use the damaged ones
 - Don’t use clamps that bottom out
 - Don’t use hoses with loose ends
 - Don’t use hoses with damaged liners
 - Make sure the vacuum pump works properly!
 - Extend length of vacuum cycle to get a more complete purge
 - Be sure to cap on tight foam!
 - Pump seals and/or diaphragms in good shape
Many of the older machines can be converted from single to double pre-evacuation.

On a simple machine with cam stops for filler valve settings, additional stops can be added for a second pre-evacuation.

We used trial and error to position these setpoints and their timing.
Locally made UHMW cam stops, turning single pre-evac into double pre-evac
Phase two DO limiting

- Button valves are a frequent source of DO pickup on older bottling lines
 - Double O-ring construction originally
 - Our practice is to add a third O-ring on the outboard seal groove to maintain seal within the taper as the button valve is depressed
 - Weekly maintenance item
 - Vacuum, leveler and snift button valves all get triple o-rings
Button valves – double up the o-rings
Phase 2 continued

- **Main filling valve**
 - Pull valves every 100,000 bottles and inspect/replace all seals/o-rings (for us, every 3 weeks at current pace)
 - Shut-off seal (umbrella seal) needs to be exactly to specification
 - Will swell and expand over time and cleaning cycles
 - Results in slower beer flow and inconsistent filling due to variable diameters
 - Next seal in the valve is the one which counter-pressurizes the bottle itself
 - Susceptible to denting, creasing, etc which allows leakage of CO2 and inconsistent fills and foam performance
Counter-pressure and leveler seals
Filler Valve

- Original design used a single o-ring
- Retrofitted with additional internal o-rings behind each bushing
 - Gives the valve 3 seal points instead of one
 - Needs tear-down/inspection every 6 months
 - Ensure replacement before oxygen or cleanability issues develop
 - Single o-ring setup required quarterly teardowns with reduced DO performance and cleanability overall
Front sleeve of filler valve
Back sleeve of filler valve
Phase three DO control

- Tower seals replaced every 6 months or 800,000 bottles
 - Primary purpose is to isolate the following line sets:
 - Beer supply to filling bowl
 - CO2 supply to bowl headspace
 - CO2 supply to leveler function
 - Keep vacuum away from everything else
 - These are large rotating seals, crucial to overall operation of the machine and the DO of your packaged beer
Phase three, cont.

- **Lift cylinders**
 - Grease before every run
 - We’ve altered the design of the lift cylinder on our machine
 - Machines from this era often changed lift cylinder design on a monthly or even weekly basis in ongoing attempts to build reliable machines
 - On an older machine such as ours, lift cylinders are frequently not available or have already been retrofitted
 - You are kind of on your own to get this component working well
 - Utilize your local machine shop! Become friends.
 - Find a Harley dealer. Stainless exhaust pipe for a Harley fits our lift cylinders perfectly
Lift cylinders continued

- Our machine tends to develop wear points that score the lift cylinders
 - Loss of compressed air and excessive air consumption
 - Irregular, uneven lifting
 - Inconsistent pressure on neck seals
 - Excessive wear on neck seals due to greater and uneven pressure
 - All resulting in intermittent and uneven DO pickup across the fill valves – not predictable
Operating parameters

- Common advice for operating fillers of this design and vintage is a bowl headspace pressure of 25-35 psi and run speed of 25 bpm
- Our experience is that we get much better results at 18 psi
 - We can’t quite explain why this is the case, but 12 months of operating results has shown it to be true for our machine
 - We run at about 31-32 bottles per minute with 8 fill heads
 - Not too bad for an old machine
Operating parameters, cont.

- CO₂ purge/sparge before bottle enters fill valve for filling cycle
 - Even after 2 vacuums, there is slight residual atmosphere remaining in the bottle which eventually ends up in the headspace of the filler bowl
 - Pre-sparging with CO₂ helps with this
 - Reduces the accumulated oxygen content in the bowl headspace
Operating parameters

- Vent bowl headspace through separate valve on top of bowl
- Continuously flush bowl headspace with new CO2 to keep oxygen level low
- Maintain continuous pressure levels
 - Downside it costs extra CO2 but offset by dramatically improved packaged beer quality over duration of packaging run
 - Without doing this we see raw DO levels increase by 100 ppb over the course of a 5 hour packaging run
Conclusion

- Take care of the basic issues
 - Use good clamps, gaskets, hoses, etc
- Maintenance is key
 - Internal seals & o-rings
- Experiment with retrofitting based on operational experience
- Experiment with operating parameters: run speed, bowl pressure, bowl venting, etc
- Invest in a DO meter and use it for every packaging run
 - Results from DO testing and TPO calculations will guide maintenance intervals, efficacy of retrofits/redesign work and different operating parameters