TRACE METALS IN BREWING

Ruth Martin Sierra Nevada Brewing Company

Outline

•Trace Metals in Beer and Brewing

- •Wort
- •Beer

Impact of Trace Metals
Beneficial Impacts
Negative Impacts

Outline

Sources of Trace Metals

- •Raw Materials
- Process Aids
- Brewing Process
- Additional Steps to Address Trace Metals
- Conclusions

Introduction

- Trace metals are chromium, nickel, cobalt, copper, iron, manganese, aluminum, selenium, lead, and zinc.
- Occur at very low levels in the environment
- Essential for many physiological and biochemical processes
- Living things need very small amounts of some trace metals
- High levels can be toxic

Trace metals in wort

More Common Trace Metals: Zn, Cu, Fe, and Mn

•Other Potential Trace Metals: • Al, Pb, Cr, Ni, Co, Sn

• Counter ions:

• Effect the solubility of the trace metals

• Beneficial Impacts: Zinc

- Enzyme Activity cofactor in over 100 enzyme reactions
- Cofactor for alcohol dehydrogenase
- Governs protein synthesis and the phospholipid composition of membranes in yeasts
- Important for yeast growth and metabolism
- Stimulates uptake of maltose and maltotriose
- Increases fermentation rate
- Stimulates ester production
- Stabilizes enzymes, protein, and membrane systems
- Optimum content should be 0.15 ppm

•Beneficial Impacts: <u>Copper</u>

- Copper is found in many enzymes that are essential to normal cellular function
- Yeast nutrient
- Dissolved copper reacts with sulfides to reduce sulfur flavors and aromas in beer
- Level recommended <0.25ppm in wort

•Beneficial Impacts: Iron

- Essential micronutrient in the metabolism of nearly all organisms
- Important for yeast budding
- Important in enzyme activity in yeast plasma membrane
- Level recommended <0.1ppm in wort

Beneficial Impacts: Manganese

- Activates and inhibits different enzymes
- Enhancing the mash enzymes
- Increases protein solubilization
- Nutrient cofactor up to 0.2ppm
- Ideal Mn levels are 0.05-0.2ppm in wort

Beneficial Impacts

- Prized for their nutritional value in beer
- Potential relationship and contribution to daily nutrition requirements
- Unfiltered beers

Trace metals in wort

• Typical levels of trace minerals in wort

Values in PPM	Chromium	Copper	Iron	Mn	Zinc
Wheat Beer	0.007	0.08	0.04	0.22	0.47
Belgian Quad	0.019	0.17	0.65	0.25	0.50
Lager	0.004	0.09	0.11	0.16	0.32
Hefeweizen	0.009	0.06	0.14	0.18	0.57
Pale Ale	0.017	0.10	0.10	0.15	0.23
IPA	0.007	0.13	0.09	0.17	0.28
Porter	0.011	0.11	0.26	0.14	0.18
Stout	0.011	0.11	0.22	0.23	0.22

Trace metals in beer

• Typical levels of trace metals in various beers

Values in PPM	Chromium	Copper	Iron	Mn	Zinc
Dark Wheat	0.054	0.30	0.51	0.59	0.04
Belgian Tripel	0.011	0.10	0.16	0.53	0.16
Gose	0.035	0.17	0.42	0.56	0.36
Wheat Beer	0.009	0.04	0.01	0.21	0.00
Lager	0.013	0.06	0.01	0.15	0.00
Pale Ale	0.013	0.07	0.01	0.12	0.00
IPA	0.017	0.08	0.01	0.17	0.01
Porter	0.015	0.04	0.03	0.09	0.00
Stout	0.015	0.04	0.06	0.31	0.00
Black IPA	0.015	0.06	0.06	0.36	0.01

•Negative Impacts: Zinc

- Commonly deficient in wort
- Completely assimilated by yeast
- Can be inhibitory and affect colloidal stability
- Toxic to yeast if Zn >1ppm
- Metallic taste
- At 0.1-0.2ppm can increase secretion of MCFA's and soapy flavors

•Negative Impacts: <u>Copper</u>

- Changes yeast plasma membrane
- Disturbs the uptake of nutrients
- Oxidizer

- Copper present in wort at more than 10ppm is toxic to yeast
- Copper levels at 0.05 ppm are reported to cause damage in the final

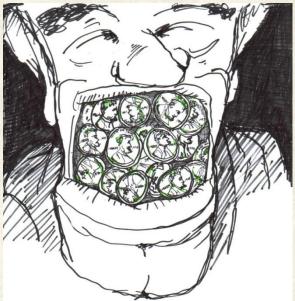
PPM	Chromium	Copper	Iron	Manganese	Zinc
1st runnings	0.01	1.85	0.07	0.26	0.37
last runnings	0.02	0.18	0.02	0.07	0.07
End of boil	0.00	0.22	0.05	0.19	0.29
Rinse water post CIP HCX nano	2.60	449.75	15.95	0.33	3.64
Wort line pre-fermenter	0.01	3.03	0.06	0.18	0.29
Fermenter	0.00	0.29	0.08	0.18	0.31

•Negative Impacts: Iron

- Slows saccharification; resulting in hazy wort and reduced yeast activity
- Flavor impact- Metallic
- Oxidation- decreased shelf life
- Physical stability impacted
- >0.3ppm can cause a grayish foam and an increase in color

•Negative Impacts: Manganese

• Similar oxidizing effect to iron and copper


Values in PPM	Chromium	Copper	Iron	Mn	Zinc
(Dark Wheat	0.054	0.30	0.51	0.59	0.04
Belgian Tripel	0.011	0.10	0.16	0.53	0.16
Gose	0.035	0.17	0.42	0.56	0.36
Wheat Beer	0.009	0.04	0.01	0.21	0.00
Lager	0.013	0.06	0.01	0.15	0.00
Pale Ale	0.013	0.07	0.01	0.12	0.00
IPA	0.017	0.08	0.01	0.17	0.01
Porter	0.015	0.04	0.03	0.09	0.00
Stout	0.015	0.04	0.06	0.31	0.00
Black IPA	0.015	0.06	0.06	0.36	0.01

•Negative Impacts In beer

Taste and Flavor Stability-

<u>Iron</u> (Fenton reaction) promote oxidative reactions <u>Copper</u> (Haber-Weiss reaction) formation of aged flavor compounds in beer

Manganese-Similar oxidizing effect to iron and copper

•Negative Impacts

- Physical stability- oxidizes beer, creates haze
- <u>Color</u>- oxidation from trace metals causes a browning color effect
- Gushing
 - Iron over 0.6ppm

Negative Impacts

- In Water
 - Taste
 - Scale (hard mineral coatings)
 - Corrosion deposits
 - Chlorination of water

•Raw Materials

• Barley and Malted Barley

- Agronomic sources: soil, water, fertilizers, and pesticides
- Kilning and roasting process (caramel and crystal malts, dark malts)

• Other sources of carbohydrates or flavors

- Wheat, rye, oats, rice
- Flavorings and spices
- Cocoa nibs
- Wood chips
- Fruits and nuts
- Candy syrups, sugars for re-fermentation

•Brewing and Process Water

- Source water
 - Maximum permissible levels (EPA)
 - Water conditioning or treatment
 - Ion Exchange
 - Membrane filtration (pores 0.1-0.45um)
 - Ultrafiltration (pores <0.1um)
 - Reverse Osmosis
 - Dechlorination (carbon filter)
 - Ultraviolet radiation

Brewing and Process Water

- Source water
 - Maximum Contaminant Levels (MCL) of trace minerals enforceable
 - (SMCL) is secondary and recommended or <u>unenforceable</u>
 - Zinc SMCL=5ppm GOAL is 0.1-0.5ppm
 - Copper SMCL=1.0ppm GOAL is <1ppm
 - Iron SMCL=0.3ppm GOAL IS ZERO
 - Manganese SMCL=0.05ppm GOAL is <0.1ppm
 - Chromium MCL=0.1ppm

- Hops-
- Yeast-
- Yeast nutrients- Zinc, but many others also available
- Brewing salts-

Process Aids
Kettle finings -verify with COA low levels of trace metals
Physical stabilizers -confirm low levels of beer soluble iron(BSI)
Filtration aids -Diatomaceous Earth(DE) use low iron DE

• Brewing Process • Brewery Equipment

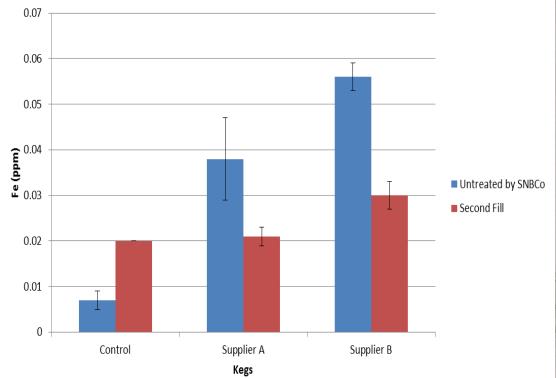
- Tanks, Pipes, pumps, etc.
- Copper equipment

• Brewing Process • Brewery Equipment

•Brewing Process

PALE AL

• Packaging Equipment


• Package

- New Kegs
- Cans

PALE A

- Tap systems
- Brass equipment can increase the copper con
- Growlers
- Bottles and Crowns

Losses in the brewing process

- Spent grain from the lauter traps Fe, Mn Cu
- Zinc is lost in **significant** amounts in mashing, kettle boil, and trub removal
- Completely assimilated by yeast
- Cold break removal
- Yeast removal
- Centrifugation
- Filtration

Additional steps to address trace metals

- Certificates of Analysis from suppliers and Continuing guarantees
- In house sampling and analysis of potential sources
 - Test kits, test strips, ion specific probes
 - Spectrophotometric analysis
 - Atomic Absorption Spectrophotometry (AAS)
 - Inductively coupled plasma (ICP)
 - Outside lab analysis
 - White Labs (Siebel)
 - Brewing and Distilling Analytical Services

Conclusions

- Very important and influential in the brewing process
- Essential cofactors for numerous fermentative enzymes
- Zinc is the most important trace element
- Copper and iron most frequently analyzed
- Copper, iron, and manganese affect shelf life -all oxidative agents

Conclusions

- Sources include water, raw materials, brewing process and equipment as well as bottling, aging and storage
- Prized for their nutritional value in beer
- Preserving the consistency and quality of the product


Acknowledgements

Ken Grossman **Gil Sanchez Paul Hoagland Brandon Smith Rick Callow Kimberly Bacigalupo Brad Spittle**

Questions?

RRA NE

PALE ALE

