Beer Stability and Stabilization

Different Terms of Stability in Beer

- <u>Microbiological stability</u>: Absence of any critical germ in the beer, e. g. spoilage bacteria
- Non-biological stability: Resistance of a beer against haze formation that is not originated from microbiological contaminations (→ raw materials)
- <u>Flavor stability</u>: Ability of the beer to keep its fresh, pure flavor as long as possible after filling; stability against the formation of stale flavor carbonyls
- <u>Foam stability (head retention)</u>: Ability of the beer to keep the head as long as possible

The non-biological turbidity dealt with in modern stabilization practices is known as "colloidal haze".

Evaluation of the clarity of a beer

Turbidity in EBC-Units	EVALUATION
< 0,2	CLEAR AND SHINY
≤ 0,3	minimum value for a filtered beer
0,21,0	Clear
1,12,0	slightly opal
2,14,0	Opal
4,18,0	Turbid
> 8,0	very turbid

What is colloidal Haze?

- Caused by low molecular weight polyphenols cross-linked with proteins by weak molecular interactions, such as hydrogen bonds. (protein-polyphenol haze)
- Colloidal haze is often formed during cold fermentation and storage and is usually removed during clarification/filtration.
- The reactions between proteins and polyphenols can continue after filtration if sufficient quantities remain!

Composition of Beer Hazes (Literature Values)

Polypeptides [%]	Polyphenols [%]	Polysaccherides [%]	Mineral- compounds [%]
58-77	15-77	2-13	2-14
40-76	20-55	-	-
65	-	35	-
45-67	20-30	_	_
40-46	-	2-4	1-4
14-45	1-3	40-80	-
-	-	40	_

Anger, Brauwelt Int. 1996

Protein Fractions in Beer and their Tendency to form Turbidity

Molecular weight of beer proteins [Dalton]	Average concentration in beer [%]	Correlation factor [-]
> 75 000	2	0,95
35 00075 000	8	0,93
13 00035 000	7,5	0,74
10 00013 000	22,5	0,45
< 10 000	60	-

Source: Mussche, De Pauw: J. Inst. Brewing 1999

Polyphenols

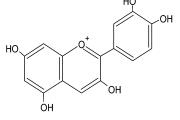
- Important part in haze formation
- Contribute to colloidal instability by protein precipitation
- Ability to form complexes with protein
- Tannins → flavanoids → dimeric, trimeric, oligomeric proanthocyanidins

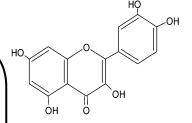
Flavanoids

- Flavanols (=catechins) and flavandiols
 (=leucoanthocyanidin) → called flavanoids
- Flavanoids are able to polymerize to polymeric molecules (never in beer, like formerly claimed, this only happens during the biosynthesis of the plants)
- Polymeric flavanoids are also known as condensed tannins or proanthocyanidins
- Important proanthocyanidins based on catechin, epicatechin, gallocatechin and epigallocatechin

Phenois

Polyphenole

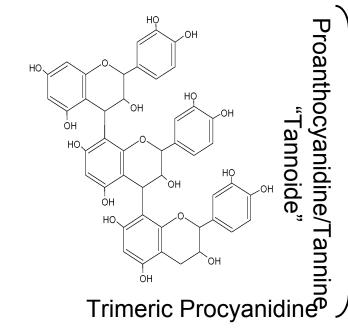

"Total Polyphenoles"


Phenolcarbonic acids

Catechine (Flavanoide)

Anthocyanidine

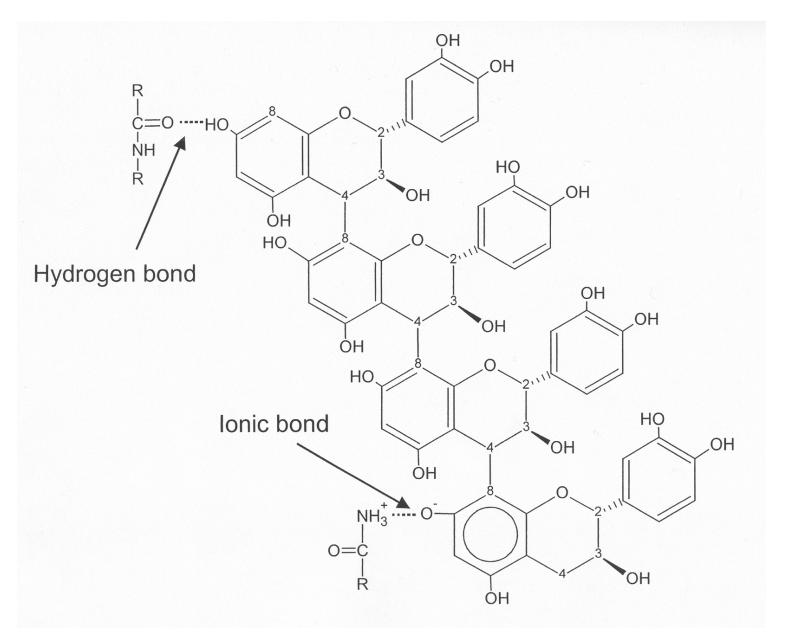
Flavonoide


Phenol

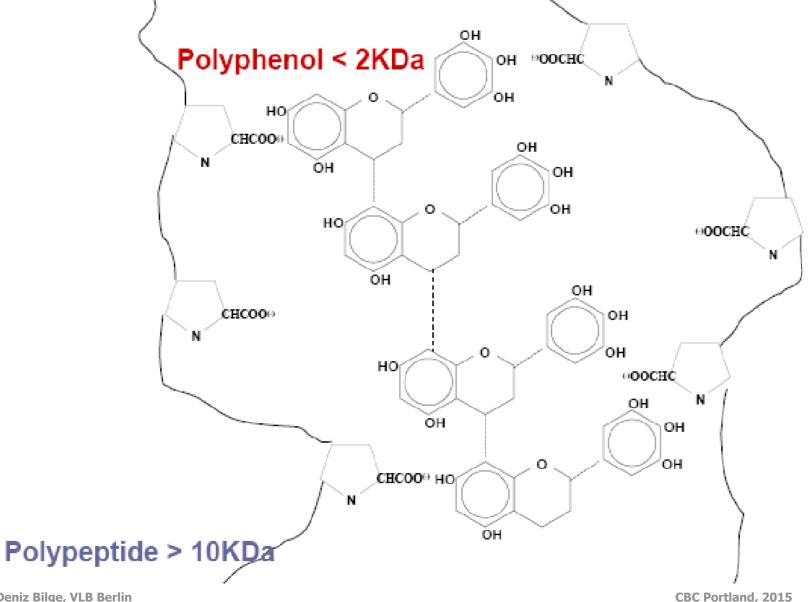
Gallussäure

Catechin

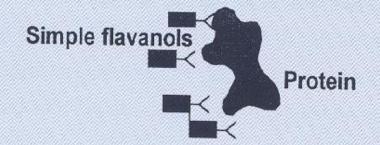
Cyanidin

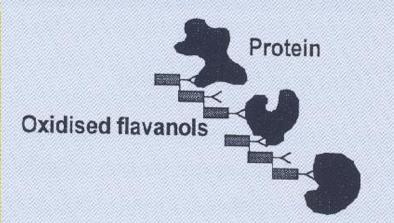

Quercetin

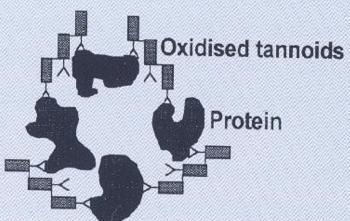
"Anthocyanogene"


VLB REPLIN

Tannin – Protein – Complex


Protein – Polyphenol Interaction





Deniz Bilge, VLB Berlin

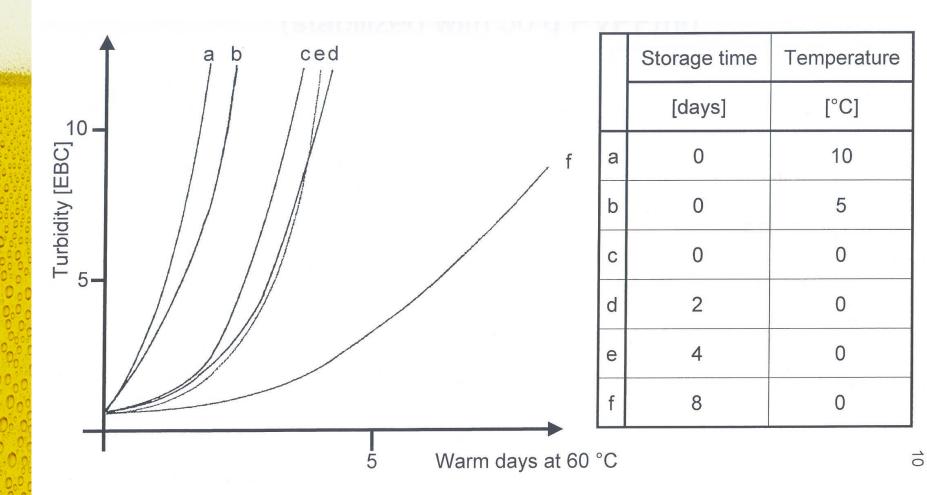
CBC Portland, 2015

Model of colloidal Haze Development

CBC Portland, 2015

Chill haze

- Chill haze is reversible
- Haze disappears at higher temperatures after having been formed at about 0 °C
- Beers maturated and filtered at a temperature below 0 °C do not form chill haze at the beginning
- After extended time at higher temperatures on the shelf beer becomes sensitive to cold
- After a while, chill haze is converted into permanent haze


Methods of Stabilization

The primary methods available to control haze are based on the following chemical interactions:

- Adsorption
- Precipitation
- Enzymatic hydrolization

Stabilization by cold Storage

Stabilization by cold Storage

0 °C - storage		4 days	8 days	14 days
Original gravity	[°P]	12,9	12,9	12,9
colour	[EBC]	9,6	9,2	9,1
Foam stability (R & C)	[Σ]	124	121	121
Warm days at 60 °C	[Tage]	2,7	3,6	4,7
Total N	[ppm]	939	932	920
Coagulable N	[ppm]	12	9	8
MgSO ₄ -precipitable N	[ppm]	175	171	173
Dimeric Proanthocyanidine	[ppm]	8,1	8,7	8,3
Catechine	[ppm]	21,5	18,0	17,5
Tannic acids	[ppm]	20,8	21,3	15,9
Anthocyanogene	[ppm]	28,0	29,9	24,2
Total-Polyphenol	[ppm]	144	134	131

Impact of Lager Temperature (7 days) on colloidal Stability

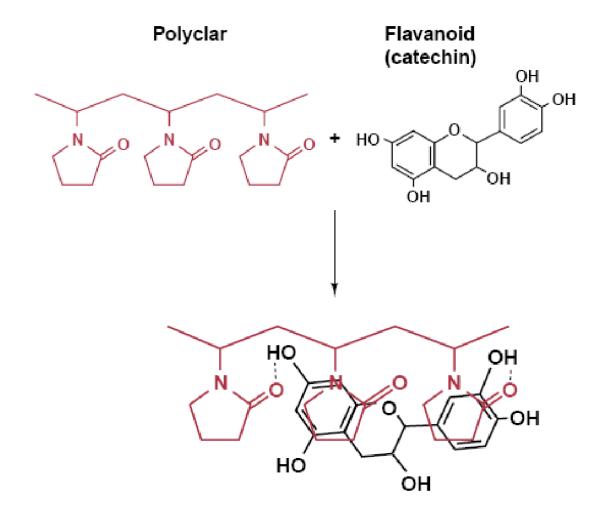
Temperature	4 °C	2 °C	0 °C	-2 °C
No. of warm days (60 °C)	1,0 days	1,6 days	1,8 days	4,0 days
Foam stability Ross & Clark	118 sec	119 sec	121 sec	123 sec

Methods of Stabilization

Given that the primary cause of non-biological beer haze is protein-polyphenol haze, modern stabilization methods attempt to remove either one or even both of the two reactive partners of the reaction.

- Proteins of molecular weight of ca. 40000 D
- Polyphenols

The two main compounds which are used to adsorb these molecules are PVPP and Silica Gel.


PVPP - (Polyvinylpolypyrrolidone)

$$H_2C = \stackrel{H}{C}$$
 $Vinyl-pyrrolidone$
 $Vinyl-pyrrolidone$
 $Vinyl-pyrrolidone$
 $Vinyl-pyrrolidone$

- Non-soluble in water
- PVPP (Polivinylpolypyrolidone): polymer of vinylpyrrolidone
- Acts through the formation of hydrogen-bonds between its carbonyl group and the hydrogen atom of the hydroxyl group of polyphenols in acidic environment - has a similar structure to a high molecular proline containing protein → high affinity to polyphenols

Mechanism of Adsorption of Polyphenols using PVPP

ISP

Application of PVPP: Increased Stability by Removal of Tannins

PVPP [g/hl]	Proantho cyanidins [ppm]	Catechins [ppm]	MgSO ₄ - N [ppm]	Warm days 60°C [EBC]	Foam R&C [sec]	Colour [EBC]
0	5,4	8,9	177	0,5	125	10,1
30	1,3	3,4	175	2,7	124	9,6
60	1,0	3,0	177	3,1	124	9,5
90	0,5	2,3	172	5,0	123	9,3

Deniz Bilge, VLB Berlin Anger, Brauwelt int. 1996 CBC Portland, 2015

PVPP Products and Application

Single Use PVPP

Advantages

- No extra filter system
- Stabilization of small batches
- Higher catechin adsorption due to smaller particle sizes

Disadvantages

- Continuous cost for single-use PVPP
- Good efficiency only after pre-clarification with a separator
- Effect on the filter life circle

PVPP Processing, single use

Factor	Recommended specification		
Water suspension, correct concentration	Between 8 to 12% w/v in deaerated water		
Hydration time	1 hour for complete hydration (swelling)		
Contact time, minimum	Less then 1 minute		
Contact time, maximum	None, adsorption is reversible		
Dosing into beer	Proportional inline dosing at between 10 and 50 g/hl as required		
Mixing	Thorough mixing in-line with beer stream		
Beer quality	Ideally a minimum of suspended solids. No detrimental effects. PVPP is removed by filtration		

VLB BERLIN

PVPP Products and Application

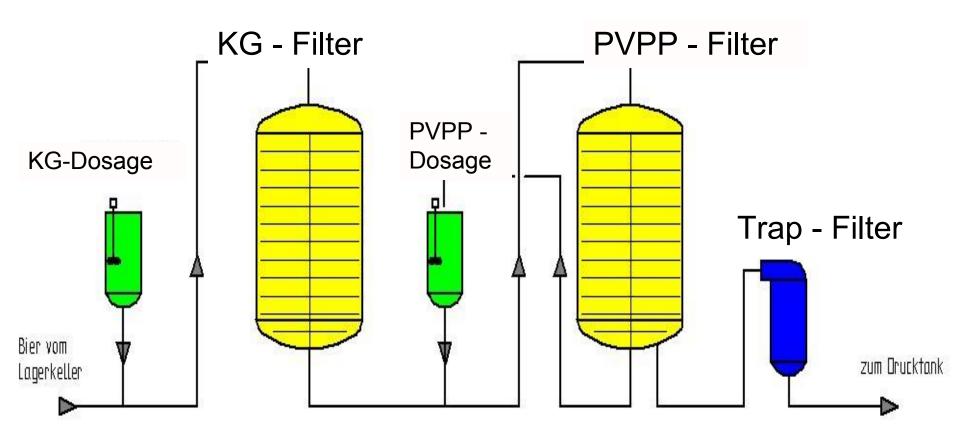
Regenerable PVPP

Advantages

- Low PVPP consumption (0.5-1 % loss)
- Full automation
- Good control of stabilization

Disadvantages

Higher equipment costs due to separate PVPP filter and consecutive trap-filter


PVPP Products and Application

PVPP containing filter layers

- Regenerable filter layers with an average content of PVPP around 20 %
- Regeneration can be realized by the use of hot caustic and a following neutralization with acid
- Adsorptive effect of the filter layers decreases with the number of uses
- Blending might be necessary to obtain a homogenious beer quality

Filter Line with regenerable PVPP Filter

Named Advantages of the Use of PVPP

- Highly effective at relatively low dosage rates and with short contact times
- Consistently achieves maximum shelf-life in beer (allowing extended 'best before' date stamping)
- Easy to use with excellent handling characteristics
- No adverse impact on foam, flavour or other beer quality parameters
- No Ideclartion on abel required completely removed by filtration
- Safe to use with no detrimental impact on the environment

Alternative PVPP Products

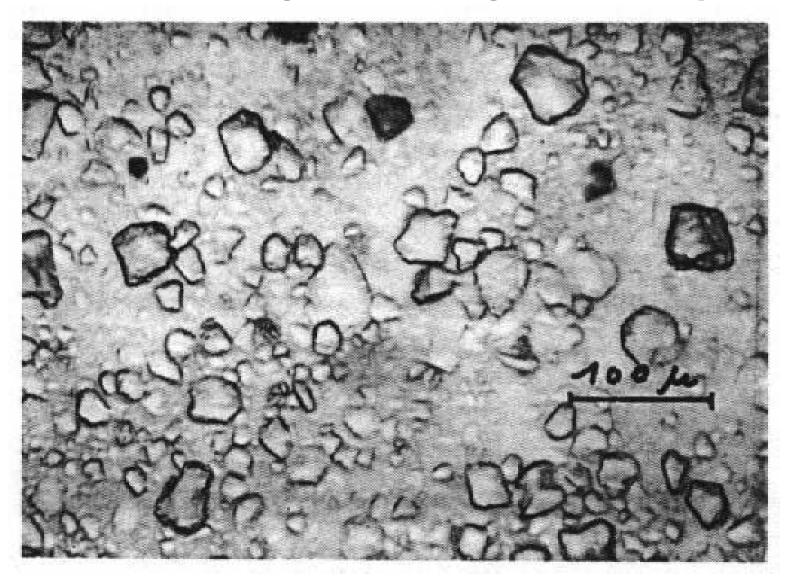
Crosspure®

- Regenerable PVPP for stabilization
- Polystyrene as filter aid
 - → Combined two polymers offer filtration as well as stabilization in one process step
 - \rightarrow It is dosed like DE
 - →The regeneration of the product is comparable to that of PVPP with the difference that an additional enzymatic cleaning process step is required to digest the cell wall of the yeast cells

Source: BASF 2008: Crosspure - Information BASF

Silica Gel

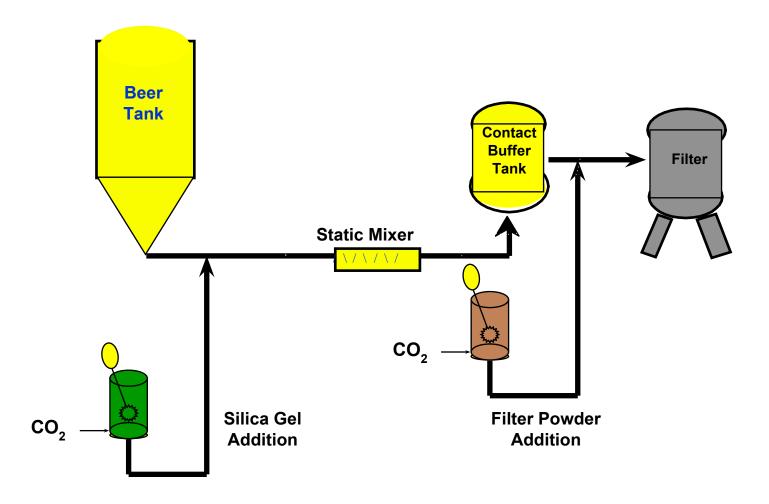
- Used for the removal of haze protein fractions in beer by selective absorption. In general no influence on foam stability
- Can be added at different stages of the production process.
- Essentially two types of Silica Gels
 - → Hydrogels with a total water content of < 60 %
 - → Xerogels with a total water content of 5 %
 - → Hydrated Xerogels with a water content of approx. 35 %
- By variations in the production process of the Xerogels influence can be taken on the fine structure of the gel and the inner surface (pore diameter)


Source: Marković, et al. (2003) - APTEFF, 34, 1-148

Silica Gel Parameters

	Hydrogel	Hydrogel Hydrated Xerogel	
Solids	35 %	65 %	~ 90 %
Pore Volume	1.8-2.0	1.5	1.0-1.2
Surface Area	Surface Area > 700 m ² /g		~500 m ² /g
Pore Diameter	Pore Diameter 10-12 nm		6-9 nm
Permeability	180-350 mDarcy	100 mDarcy	23 mDarcy

Silica-xero-gel 200x in light-microscope

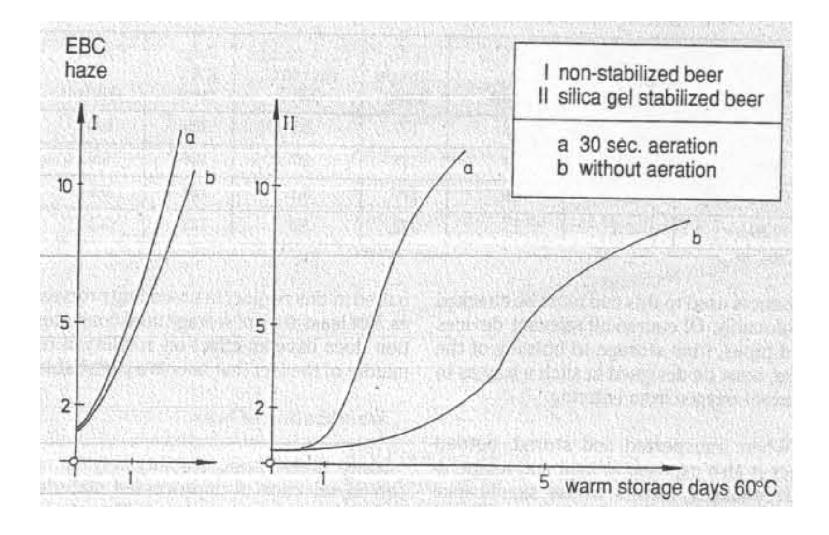

Silica Gel Dosing

- At the stage when green beer is pumped from the fermentation tank to the maturation tank
- To the buffer tank prior to DE filtration or centrifugation before using a cross-flow filtration unit
- Most often, silica gel is added together with DE or with single-use PVPP. When adding Silica Gel to the maturation stage, generally 1/3 of the total amount is added, while the remaining 2/3 are added at the filtration stage

Source: Marković, et al. (2003) - APTEFF, 34, 1-148

Application of silica gel as stabilizer to the Filter

SourcenPQBystems/LB Berlin CBC Portland, 2015


Application of Silica gel:

Increased stability by removal of protein and protein-tannin compounds

Silica [g/hl]	Proantho. [ppm]	Catechins [ppm]	MgSO4- N [ppm]	Warm days 60 °C	Foam R&C [sec]	Colour [EBC]
0	10,3	7,8	171	0,7	127	7,8
10	9,1	7,8	150	2,6	123	7,9
20	7,7	8,6	157	2,9	122	7,6
50	9,5	7,7	141	4,9	121	7,9

Anger, iBratiwett, intl. 1996erlin CBC Portland, 2015

Combined PVPP / Silica Treatment

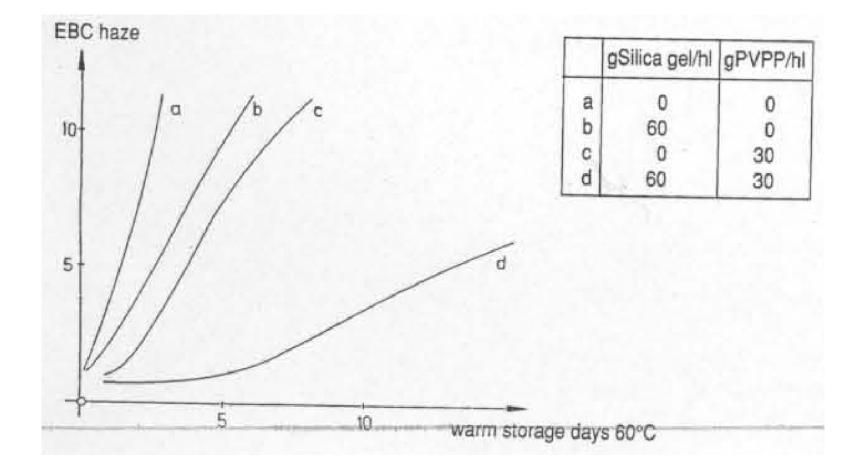
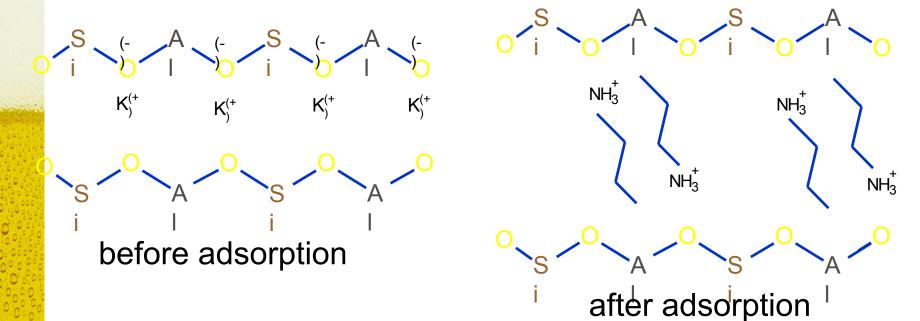

- Some studies claim that a balanced adsorption of protein and polyphenol is more desirable than removing either polyphenol or protein alone. Combined use of PVPP and Silica Gel have shown to give very effective stability.
- Composite products of Silica Gel and PVPP are available.
- It has been reported that the beer treated with the combined stabilizer gave lower filter differential pressure and a longer run

Table 3. Increase in filter run length with combined application of polyvinylpolypyrrolidone (PVPP) and silica gel as an admixture (Polyclar Plus 730)

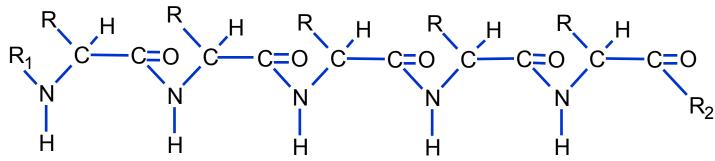
Stabilizer	Addition rate (g/hL)	∆p/h	Filter run time (h)
Xerogel only	36	0.49	6.4
PVPP only	13	0.35	7.4
Polyclar Plus 730	33	0.25	12.0

Source: Rehmanji et al. (2005), MBAA TQ vol. 42, no. 4 • 2005 • pp. 335-337



Bentonite

- Aluminum silicate
- High swelling power → beer loss
- Difficulties with overdosing and prolonged contact time → to strong decrease of high molecular nitrogen substances accompanied with deterioration of foam stability
- Combined application with PVPP is also possible



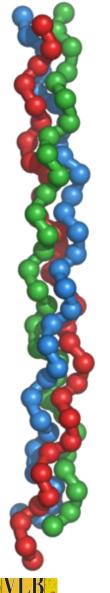
BENTONITE

Cations are exchanged

Protein structure

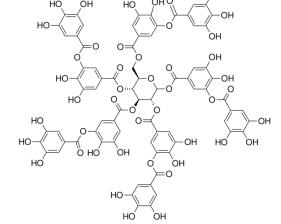
VLB BERLIN

Deniz Bilge, VLB Berlin


Bentonite stabilized Beers

	Bentonite [g/hl]	Proantho. [ppm]	Catechins [ppm]	MgSO4- N [ppm]	Warm days 60°C [EBC]	Foam R&C [sec]	Colour [EBC]
	0	4,5	7,1	169	0,4	127	9,7
Ī	50	4,0	6,7	136	1,7	123	8,8
	150	3,9	6,5	95	5,3	121	6,8

Stabilization by Precipitation: Isinglass


- Effective beer clarification aid. The purified form is produced from the air bladder of the sturgeon and certain other fishes. It consists of 70 % of the protein collagen and is dosed at the end of fermentation. Since the molecular structure of collagen consists of positive and negative charged areas it is able to bind proteins and yeast cells (negatively charged cell wall)
- Possible negative consumer perception because fish products are known to be one of the major food allergens. Although scientific trials indicate that there is no evidence that isinglass could cause allergenic reactions in people who are allergic to fish a small significant sector of consumers might choose not to drink the beer

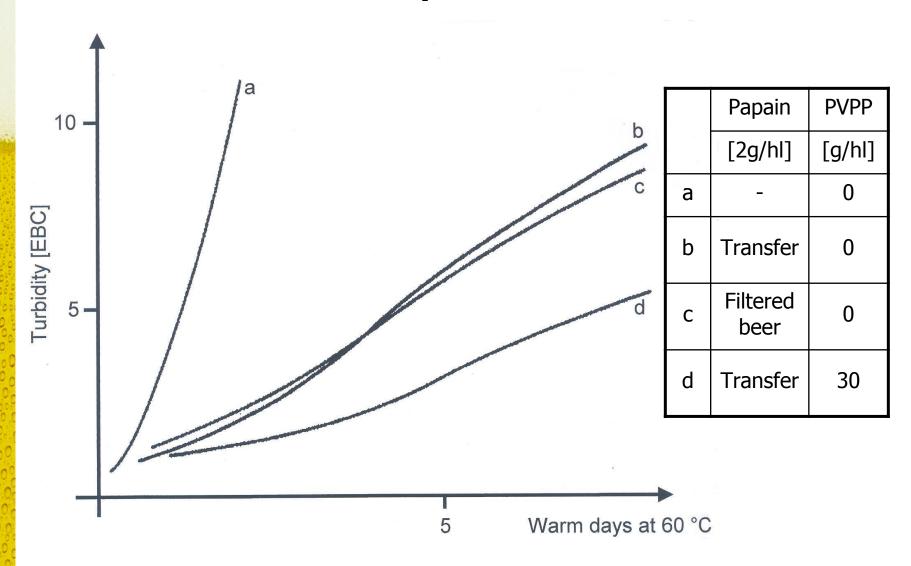
Tannic Acid

- Natural gallotannins extracted from Chinese gall nuts or Sumac leaves
- Has many hydroxyl groups that attract nucleophylic SH- and NH- groups of haze active proteins in a similar manner as polyphenols to beer proteins during maturation
- Very efficient stabilizer, but produces voluminous precipitates
 → beer loss, centrifugation necessary
- 5 8 g/hl dosed to cold maturation
- Has been found to decrease concentration of the foaming polypeptides in some cases
- Not allowed in some countries (must be indicated on the label in others)

Source: Coors, J. H., (1983) The Practical Brewer: A Manual for the Brewing Industry

Tannins

Tannin [g/hl]	Mg-SO ₄ – N [ppm]	Anthocyan. [ppm]	Warm days 60 °C [EBC]	Foam R&C [sec]				
0	148	43	2,4	117				
4	127	35	4,3	118				
4+	138	24	>16	118				
8	119	36	8,4	117				
8+	126	25	>16	116				
+ : plus 50g P	+: plus 50g PVPP/hl							


Anger, Brauwelt int. 1996

Proteolytic Enzymes

- Usually Papain produced from the latex of Carica papaya
- Hydrolyses proteins
- 2 to 6 ml/hl to rough or bright beer
- Does not differentiate between haze active and non haze active proteins → foam stability is influenced negatively
- Survives normal pasteurisation (< 20 PU's) → continues in bright beer and effects foam negatively
- ADVANTAGE: Cheap
- DISADVANTAGE: Influences foam stability

Papain

Prolin specific Enzymes

- Specific enzymes attack proteins at prolin sites
- Protein fragments become smaller and therefore better soluble
- Foam active proteins are known to be not rich in prolin, so effects on foam stability are lower then with unspecific enzymes
- Trub active proteins are known to be rich in prolin having lots of sites to be attacked by this enzyme
- The dosage rate is 2 ml/hl and can be added in-line in the fermentation vessel or to the wort before pitching.
- Studies have shown that PSEP can produce a stabilisation comparable with PVPP / Silica Gel.

Enzymatic Stabilisation: Brewers Clarex TM

Advantages (according to the producer)

- higher temperatures during maturation possible
- low investment and energy costs
- No disposal waste
- Can be easily integrated with DE-free filtration technology
- Small liquid dosage has a very low risk of O₂ ingress

Disadvantage

possibly high 90° turbidity values ("invisible haze")

Sources: DSM Food Specialties / Bamforth, C., (1999), Beer Haze. ASBC Journal

