Brewery Burns -Causes and Avoidance

Presenter: Matt Stinchfield

Brewers Association Safety Ambassador Owner/Brewer Ploughshare Brewing Co., Lincoln, NE 2017 Craft Brewers Conference, Washington, DC

Don't Get Burned!

- Burns are...
 - VERY PAINFUL
 - SOMETIMES FATAL
 - SLOW TO HEAL
 - EMOTIONALLY SCARRING
 - EXPENSIVE

- Burns in the Brewery...
 - HAVE MANY CAUSES
 - MORE COMMON THAN
 REPORTED
 - CAUSE LONGTERM
 DISRUPTION
 - EMBARASSING FOR VICTIMS

Good News! Burns are preventable through improved work practices, engineering controls and personal protective equipment.

Cost Example of a Serious Burn ^[1]

COST ELEMENT	TYPICAL COST	COMMENTS
Direct costs	\$ 37,389	Workers Comp
Indirect costs	\$ 41,127	Employer pays
Total before fines	\$ 78,516	
Sales to cover total before fines	\$ 314,064	Assume 25% gross sales margin
Incidentals		
OSHA fine(s)	\$ 12,000	Minimum for each "serious violation"
Workers Comp premium EMR	???	Min. 3 yrs before rate returns to pre-burn multiplier
^[1] Source: 2017 Brewery Safety Boot Cam LOSS OF Productivity	ıp ???	Hiring, training a replacement; equipment upgrades

Today's Talk

- What is a Burn?
- Root Causes of Burns
- Burn Hazard Assessment
- Types of Burns
 - Hazard assessment
 - Avoidance strategies
- Experiences of Your Peers

What is a Burn?

Tissue damage caused by rapid heating or chemical reaction

- Severity increases due to
 - Energy transfer
 - Duration
- Results
 - Tissue and nerve damage
 - Slow, painful recovery
 - Skin grafting or replacement
 - Physical and psychological scars
 - Systemic effects if >30% of body

Source: National Center for Biotechnology Information, after Jackson, 1947.

Burning by Degree

1st Degree ("superficial thickness")

- Epidermis injured
- Usually no lasting affects

2nd Degree ("deep partial thickness")

- Tissue damage to epidermis and dermis
- Blistering is common

3rd Degree ("full thickness")

- Destruction of epidermis and dermis
- Triggering widespread systemic response
- Lengthy, complex treatment required

Source: Nurselabs.com.

Systemic Effects Beyond the Burn Site

Body Responds to Burn by

 Releasing cytokines and other anti-inflammatory mediators

• Results

- Bronchoconstriction
- Increased basal metabolic rate
- Cardiovascular issues
 - Heart contractions decreased
 - Vasoconstriction of organs
- Reduced immune response

Source: National Center for Biotechnology Information, US National Library of Medicine.

Root Causes of Burn Accidents

Failure to Understand Hazards

Hazard Assessment Process

- 1. Walk through each task
- 2. ID hazards and sources
- 3. Organize hazards step by step
- 4. Analyze hazards: type, severity, likelihood
- 5. Specify "hazard controls"

Utilizing Hazard Controls

- Preventative and protective steps that eliminate or minimize hazards
- Build hazard controls into SOPs

Human Factors

- State of Mind
 - Rushing, Frustration
 - Fatigue, Complacency
 - Distraction
- Risky Behavior
 - Exceeding design specs
 - Line of fire
 - Balance-traction-grip

Brewery Hazards & Hazard Assessment Tool

HAZARD

1. Conduct a Walk-through Survey the area. Think through every step involved in completing the Tack. Describe the activities associated with each task.

2. Identify Hazards and Sources

Use the examples of hazard types shown on the reverse of this card to identify hazard types and where they may occur.

3. Organize Hazard Data

For each step in the Task, compile a list of specific hazards that could be encountered and understand their consequences, i.e. describe possible injury.

4. Analyze Hazard Data

Evaluate hazards by type, risk, likelihood, and severity of possible injury. Note where multiple hazards coexist.

5. Specify Hazard Controls

For each hazard, specify one or more hazard control strategies, which could include: engineering controls, administrative controls and safe work practices, and personal protective equipment.

Hazard Assessment for Burn Hazards

- 1. Walk through each task
- 2. ID hazards and sources
- 3. Organize hazards step by step
- 4. Analyze hazards by type, severity, likelihood
- 5. Specify "hazard controls"

Types of Burns

1. Thermal Burns

- 1. Scalding liquids
- 2. Boiling liquids
- 3. Steam
- 4. Surface contact hot & cold

2. Chemical Burns

- 1. Corrosives acids & caustics
- 2. Oxidizing sanitizers
- 3. Electrical Burns
 - 1. Electrocution
 - 2. Arc flash

4. Robert Burns

"There is no such uncertainty as a sure thing."

Hazard Assessment for Various Burns

HA – Name of Hazard

- Description of principal hazard
- What causes this hazard?
- Likelihood/Severity
- Hazard Controls

 Safe Work Practices
 Administrative Controls
 Engineering Controls
 Personal Protective Equipment

HAZARD

 Conduct a Walk-through Burvey the area. Think through every step involved in completing the Task. Describe the activities associated with each task.

Identify Hazards and Sources
Use the examples of hazard types shown on the reverse
of this card to identify hazard types and where they may cocur.

3. Organize Hazard Data

For each step in the Task, compile a list of specific hazards that could be encountered and understand their consequences, i.e. describe possible injury.

4. Analyze Hazard Data

Evaluate hazards by type, risk, likelihood, and severity of possible injury. Note where multiple hazards coexist.

5. Specify Hazard Controls

For each hazard, specify one or more hazard control strategies, which could include: engineering controls, administrative controls and safe work practices, and personal protective equipment.

1. Thermal Burns in Brewhouse Ops

1.1 HA – Hot Water Contact

- Hazard
 - Scalding water/wort 140-180°F
- Failures/Errors
 - Hose/fittings/sprayer failure Manual valve operational mistake
- Likelihood/Severity
 Brief exposure, 1st 2nd degree burns
- Hazard Controls
 Maintain equipment
 SOPs/Operational training
 Hand/eye/skin protection
 Long pants over boots

1. Thermal Burns in Brewhouse Ops (cont.)

1.2 HA – Boiling Wort Contact

- Hazard Scalding wort 180-215°F
- Failures/Errors
 Procedural
 - Overcharging kettle volume
 - Applying excessive heat
 - No foam inhibitor
 - Valve/clamp mistake
 - Equipment
 - Absence of foam cutoff switch

- Failures/Errors
 Behavioral
 - Adding hops too quickly
 - Exposed position near manway
 - Exposed beneath kettle/deck

Garments

- Not wearing long pants
- Not wearing industrial boots
- Tucking pants into boots
- Not wearing eye, hand, foot protection

1. Thermal Burns in Brewhouse Ops (cont.)

1.2 HA – Boiling Wort Contact

- Likelihood/Severity
 Extended exposure wort is sticky
 Large contact area on body
 Severe: 2nd &3rd degree burns
- Hazard controls
 - SOPs Safety training

- Hazard controls (cont.) Procedural knowledge
 - Trimming heat appropriately
 - Caution in hop addition
 - Use of foam inhibitor
 - Double check plumbing/wort route
 - Established emergency procedures
 Equipment selection
 - Properly sized kettle
 - Foam cutoff switch
 - Hand/eye/skin protection
 - Long pants over boots

Real Brewery Burns

Hot Water Immersion

1. Thermal Burns in Brewhouse Ops (cont.)

1.3 JHA: Steam Contact

- Hazard Steam is >212°F
- Failures/Errors
 Kettle/whirlpool manway proximity
 Steam line failure (unlikely)
- Likelihood/Severity Brief exposure, 3nd degree burns
- Hazard Controls
 SOPs/Operational training
 Hand/eye/skin protection
 Properly installed/maintained steam
 equipment

1. Thermal Burns in Brewery Operations

1.4 JHA: Direct Contact

- Hazard Hot surfaces >140°F Frost, liquified gases <32°F
- Failures/Errors
 Unmarked/unprotected surfaces
 Slipping/falling into surface contact
- Likelihood/Severity
 Brief-extended exposure
 1st-2nd degree burns
 Frostbite
- Hazard Controls
 SOPs/Operational training
 Skin protection
 Hazard warning signs/markings

More Real Burns

Hot Surface Contact

Cryogenic Gas Contact

Four days after frostbite injury due to contact with liquified gas.

Sixteen months after injury.

Source: Turkish journal of trauma & emergency surgery: TJTES 16(5):433-8 · September 2010

Case Study 1

Wort Boilover

2. Chemical Burns

2.1 HA -- Acid/Caustic Contact

- Hazard
 - Chemical reactions with tissue
- Failures/Errors
 Careless dispensing/mixing
 Slipping/falling into surface contact
- Likelihood/Severity
 Common exposure, severity varies
 Strength of agent
 Getting garments off
 Washing off with copious water
- Hazard Controls
 Hand/eye/skin protection
 Emergency shower close by
 Operational training

2. Chemical Burns (cont.)

2.2 JHA -- Oxidizing Sanitizer Contact

- Hazard
 Chamical read
- Chemical reactions with tissueFailures/Errors
 - Careless dispensing/mixing Slipping/falling into surface contact
- Likelihood/Severity
 Common exposure, severity varies
 Strength of agent
 Getting garments off
 Washing off with copious water
- Hazard Controls
 Hand/eye/skin protection
 Emergency shower close by
 Operational training

Case Study 2

Hot Caustic Washdown

3. Electrical Burns

1. Electric Shock

- Electricity travels through the body
- <500 V not lasting</p>
- >500 V serious injury

Symptoms

- Heart arrhythmia
- Organ, brain damage
- Difficulty breathing, speaking, hearing
- Entry/exit wounds

Source: National Center for Biotechnology Information, US National Library of Medicine.

2. Arc Fault

- High voltage flash
- Current through air or unintended path
- Vaporizes metal
- Expands air
- Arc blast pressure
- 4x heat of the sun
 <u>Symptoms</u>
- 3rd degree burns
- Loss of eyesight, hearing, memory
- Concussion trauma

3. Electrical Burns (cont.)

3.1 HA -- Electrical Shock / Burns

- Hazard
 - Current through conductive tissues
- Failures/Errors
 - Amateur / unmaintained wiring Direct contact with active circuits
- Likelihood/Severity Brief exposure, 1st - 3rd degree
- Hazard Controls
 De-energization Lockout/tagout
 Ground fault protection (GFCI)
 Waterproof housings switch-rated plugs
 Rubberized hand/skin/foot protection

Real Brewery Burns

EIGHT MEN ELECTROCUTED AT NEW BEVO PLANT

Eight men were electrocuted and three suffered severe electric shocks when a wire cable which the men were handling at a new "Bevo" building of the Anheuser-Busch Brewing Association, St. Louis, broke December 4 and fell on a cable belonging to the Union Electric Co., which supplies current used in the construction work.

Fourteen men, employed by the Gilsonite Construction Co., were wrecking a tower which had been used for raising concrete to the upper floors of the new building.

Source: The Western Brewer and Journal of the Barley, Malt and Hop Trades, Dec. 1917.

Source: http://www.usgennet.org/. Thomas Kempland collection, 1914-17.

3. Electrical Burns (cont.)

3.2 HA -- Arc Fault

- Hazard
 - Unintentional discharge of electricity through an unplanned path
- Failures/Errors
 - Direct contact with active circuits
- Likelihood/Severity
 - Brief exposure, burning metal, shock wave, extraordinary temperatures
- Hazard Controls
 - De-energization Lockout/tagout Arc fault circuit interruptor (AFGI) Special training, tools, PPE

Case Study 3

Arc Flash

First Aid for Burns

1st degree (superficial) burns

- Cool water
- Treat to prevent infection
- Ointments are ok
- Protect during healing

2nd/3rd degree (full thickness) burns

- Immediate medical help / call 9-1-1
- Do not remove clothing if stuck
- No ice, ointments, cotton balls, etc.
- No home remedies, e.g. butter, eggs

2 workers, Boston Beer Co., Breinigsville, PA Boiler explosion, eye and head injuries, asbestos.

40 yr old worker, Anheuser-Busch, Van Nuys, CA

Fell into hot mash. 30% 1st & 2nd degree burns. Hospitalized.

LAUTER TUN BREW KETTLE

Jeff Carlson, Harmon Brewing Co., Tacoma, WA Scalding mash water in boot. Skin grafts. Kerry Thomas, Edge Brewing Co, Boise ID

Wort boilover. Nearly fatal complications. Skin grafts. PTSD. 5 months away from work.

Nichole Reiman, Odd13 Brewing, Lafayette, CO Direct contact surface burn. Superficial.

Adam Chandler, Oak Pond Brewing Co. Skowhegan, ME

Hot caustic spray.

Andrew Childs and Jason Bathgate, 8 Wired Brewery, Warkworth, NZ

BrewersAssociation.org

Wort boilover. Months away from work. Skin grafts.

Jimmy Vollmer, Benson Brewery Omaha, NE

Wort boilover.

Teri Fahrendorf, Great Western, Vancouver, WA Boiling water in boot. Skin grafts.

Mark Moynihan, Knoxville, TN

Oxygen enrichment fire inside a fermenter. 75 days in burn unit. Died from injuries.

Summary – Don't Get Burned!

Causes and Avoidance

1. ASSESS EACH TASK

2. KNOW THE BURN HAZARDS

- Thermal burns
- Chemical burns
- Electrical burns

3. UNDERSTAND BURNS BY TYPE, LIKELIHOOD, AND SEVERITY

4. IMPLEMENT HAZARD CONTROLS

- Preventative: avoid exposure
- Protective: reduce exposure
- Develop and adhere to procedure

Your family, coworkers, and customers want you in one piece so you can keep making the beer!

Thank You

Especially to those who shared their personal experiences.

Engage in the Safety Dialogue through: Brewers Association - The Forum, Safety Exchange, Lessons Learned Your Local Brewers Guilds and Safety Trade Associations

Talk to your Coworkers and Colleagues

