
Small Scale CO2 Capture: 3 Case Studies

& BrewExpo America

Small Scale CO2 Recovery Solutions Advancing Proven Science for Small Craft Brewers

Featured in Brewer's Association Sustainability Best Practices Manual: Energy Usage, GHG Reduction, Efficiency and Load Management Manual

1998 US Craft Brewer
1 MM Lbs CO2 Reduced

2015-17 Chico & NC Facility \$1 MM / 2 Year Payback

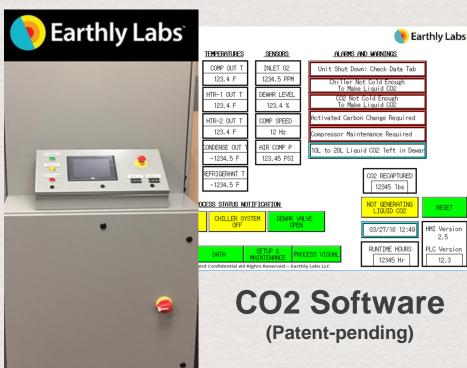
How Much CO2 Do We Use? CO2 / BBL

CO2 Usage Insights

- National Average 4 21 lbs / BBL
- Findings of Survey 100 Breweries
- Primary Areas of Use:
 - 1. Fermentation Tanks
 - 2. Canning
 - 3. Kegging
 - 4. Pushing Beer
 - 5. Cleaning Tanks and Pipes

Ways to Reduce CO2 Usage

- Assess usage vs national average
- Assess Usage Points and compare
- Icing on tanks when not in use suggest leaks
- Allowing tanks to purge overnight drains tanks
- Create best practices and monitor personnel


POLL #1: How much CO2 do you use per BBL?

Go to website:

Sli.do Enter # D165

Small Scale CO₂ Solution First Plug-n-Play CO2 Recovery Solution

CO2 Software

Foam Trap

CO2 Storage

CO2 Quality **Assurance**

CO2 Unit CiCi™

(Patent-pending)

The ABGB Case Study

Brewery History Founded in 2013

- "Best Large Brew Pub" (2016, 2017)
- 1,700 BBL in Austin, Texas
- Brew Pub with To-Go Cans
- Committed to Community & Reducing Waste

CO2 Profile

 Produce More CO2 in Fermentation vs Consume

Key Pilot Goals

- Reduce or Eliminate CO2 Costs
- Reduce Greenhouse Gases
- Advance "Hell Yes" Program Goals

Pilot Experience & Next Steps

Pilot Experience

- Easy Installation in Hours
- 3 Phase 208 Connection
- Deliver on a Forklift
- Flex Tubing (Temporary) Plumb to Tanks
- Refrigerator Size Footprint in Limited Space
- Simple Foam Trap
- Use on fermentation and bright tank
- CO2 Storage can replace "rented" systems

R & D Efforts for Small Brewhouse & Tap Room

- Below 2000 BBL
- Address low flow & low pressure

Beer Quality Test & Results

- Carbonated Same Pale Ale with Recovered CO2 & Commercial CO2
- Brewer Blind Taste Tests to Determine Difference & Preference
- Results: 19, Earthly (11), Commercial (7), Neutral (1)
- Quality Insights Carbonation Head, Aroma, Lacing

Celis Brewery - CO₂ Case Study

CELIS BREWERY AUSTIN TEXAS

Brewery History

- Founded in Belgium in 1966 by Pierre Celis
- First Austin brewery opened July 11, 1992
- Reopened in Austin, TX in 2017
- Christine Celis & daughter Daytona
- 24,000 BBL with expansion planned
- #1 Product Celis White, Belgian wit
- Bottles and cans distributed throughout Texas

CO₂ PROFILE

CO₂ captured ~85% of CO₂ consumed

Driving Force

- Reduce CO₂ waste and costs
- Be an innovator
- Improve safety of facility through reduced CO₂
- Align brand with doing good

Third Party CO₂ Quality Test

RESULT	PARAMETER, CHEMICAL	FORMULA	(UNITS)	DL	METHOD	ISBT GUIDELINE LIMIT
99.99+	Purity	CO ₂	(% v/v)	5.	ISBT 4.0	99.9% v/v min.
nd	Moisture	H ₂ O	(ppm v/v)	1.	ISBT 3.0	20 ppm v/v max.
nd	Oxygen	O ₂	(ppm v/v)	4.	ISBT 4.0	30 ppm v/v max.
nd	Carbon Monoxide	CO	(ppm v/v)	0.5	ISBT 5.0	10 ppm v/v max.
nd	Ammonia	NH ₃	(ppm v/v)	0.5	ISBT 6.0	2.5 ppm v/v max.
nd	Nitrogen Monoxide	NO	(ppm v/v)	0.5	ISBT 7.0-1	2.5 ppm v/v max.
nd	Nitrogen Dioxide	NO ₂	(ppm v/v)	0.5	ISBT 7.0-1	2.5 ppm v/v max.
	Non-volatile Residue	NVR	(ppm w/w)	1.	ISBT 8.0	10 ppm w/w max.
	Non-volatile Organic Residue	NVOR	(ppm w/w)	1.	ISBT 8.0	5 ppm w/w max.
nd	Methanol	MeOH	(ppm v/v)	0.2	ISBT 9.0	10 ppm v/v max.
1.4	Total Volatile Hydrocarbons	THC	(ppm v/v as CH ₄)	0.1	ISBT 10.0-1	50 ppm v/v max.
nd	Total Non-Methane HC's	TNMHC	(ppm v/v as CH ₄)	0.1	ISBT 10.0-1	20 ppm v/v max.
nd	Acetaldehyde	AA	(ppm v/v)	0.05	ISBT 11.0	0.2 ppm v/v max.
nd	Aromatic Hydrocarbon	AHC	(ppb v/v as CeHe)	2	ISBT 12.0	20 ppb v/v max.
nd	Total Sulfur Content	TSC	(ppm v/v as S)	0.02	ISBT 13.0	0.1 ppm v/v max. (excl. SC
nd	Sulfur Dioxide	SO ₂	(ppm v/v)	0.02	ISBT 14.0	1 ppm v/v max.
	Sensory Tests					
	Odor of Solid CO2 (Snow R	(esidue)		na	ISBT 15.0	No foreign odor
	Appearance of Solid CO ₂ (Snow Residue)				ISBT 15.0	No foreign appearance
PASS	· · · · · · · · · · · · · · · · · · ·				ISBT 16.0	No foreign odor
PASS	Taste in Water				ISBT 16.0	No foreign taste
PASS	Appearance in Water				ISBT 16.0	No color or turbidity

CO₂ Sensory Quality Check Carbonated Water Test for Recovered CO₂

Demonstrate Sensory Quality Checks

- Low levels of VOC going into activated carbon filter
- Low risk of breakthrough of activated carbon filter
- How to test CO₂ for flavor-impacting impurities
- Sensory analysis of carbonated water
- Cheap, easy, little to no additional equipment

Scope Test

- Carbonated with CO₂ in Water over 3 Days
- 2 Corny Kegs in Ice Bath, 30 lbs CO2
- 11 Taste Testers

Results

- 95% Confidence Level
- Preferred Recovered CO₂ Water
- Commercial Tasted like "Metallic" and "Plastic"

CO₂ Quality Check – Monitoring O₂ Nondetectable Oxygen limits in CO₂

- Recovered CO₂ show nondetectable limits of O₂ in all third-party ISBT tests
- Earthly system has O₂ sensor on inlet
- Periodically monitor O₂ in recovered CO₂
- O₂ meter (gas) is best solution for quality control

(512) Brewing Case Study

Brewery History Founded in 2009

- 12,000 BBL in Austin, Texas
- Organic Beers, Porters
- Distribute Organic Beer Kegs in Texas
- Committed to Sustainability

CO2 Profile

Fermentation 3X total CO2 needed

Capture Pilot Tests

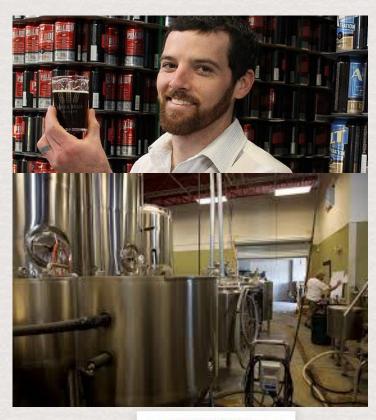
- ISO 10399 Duo Trio Test
- Great carbonation, visual likeness
- Test revealed no discernible difference
- Oxygen readings 11 ppb 17 ppb

CRAFT BREWERS conference & BrewExpo America

Hops & Grain: Case Study

Brewery History Founded in 2011

- 8,500 BBL in Austin, Texas,
 Adding 15,000 BBL in San Marcos
- Tap Room and Distribution in Texas and Colorado
- Committed to Sustainability in all we do


CO2 Profile

Fermentation blowoff produces 3X total CO2 needed

Key Benefits

- Reduce CO2 Costs, Capture 1.3x What Purchased
- Reduce Greenhouse Gases 44%
- Advance Sustainability Goals
- ROI 1 -2 Years
- Transparent consumer engagement opportunity
- Brand building opportunity

CO2 Quality Tests - Internal & Third-party

RESUL	T PARAMETER, CHEMICAL	FORMULA	(UNITS)	DL	METHOD	ISBT GUIDELINE LIMIT
99.99+	Purity	CO ₂	(% v/v)	5.	ISBT 4.0	99.9% v/v min.
14	Moisture	H ₂ O	(ppm v/v)	1.	ISBT 3.0	20 ppm v/v max.
nd	Oxygen	O ₂	(ppm v/v)	4.	ISBT 4.0	30 ppm v/v max.
nd	Carbon Monoxide	CO	(ppm v/v)	0.5	ISBT 5.0	10 ppm v/v max.
nd	Ammonia	NH ₃	(ppm v/v)	0.5	ISBT 6.0	2.5 ppm v/v max.
nd	Nitrogen Monoxide	NO	(ppm v/v)	0.5	ISBT 7.0-1	2.5 ppm v/v max.
nd	Nitrogen Dioxide	NO ₂	(ppm v/v)	0.5	ISBT 7.0-1	2.5 ppm v/v max.
nd	Non-volatile Residue	NVR	(ppm w/w)	1.	ISBT 8.0	10 ppm w/w max.
nd	Non-volatile Organic Residue	NVOR	(ppm w/w)	1.	ISBT 8.0	5 ppm w/w max.
nd	Methanol	MeOH	(ppm v/v)	0.2	ISBT 9.0	10 ppm v/v max.
nd	Total Volatile Hydrocarbons	THC	(ppm v/v as CH ₄)	0.1	ISBT 10.0-1	50 ppm v/v max.
nd	Total Non-Methane HC's	TNMHC	(ppm v/v as CH ₄)	0.1	ISBT 10.0-1	20 ppm v/v max.
nd	Acetaldehyde	AA	(ppm v/v)	0.05	ISBT 11.0	0.2 ppm v/v max.
nd	Aromatic Hydrocarbon	AHC	(ppb v/v as CeHe)	2	ISBT 12.0	20 ppb v/v max.
nd	Total Sulfur Content	TSC	(ppm v/v as S)	0.02	ISBT 13.0	0.1 ppm v/v max. (excl. SO ₂)
nd	Sulfur Dioxide	SO ₂	(ppm v/v)	0.02	ISBT 14.0	1 ppm v/v max.
	Sensory Tests					
PASS	Odor of Solid CO ₂ (Snow Residue)			na	ISBT 15.0	No foreign odor
PASS				na	ISBT 15.0	No foreign appearance
PASS	Odor in Water			na	ISBT 16.0	No foreign odor
PASS	Taste in Water				ISBT 16.0	No foreign taste
PASS	Appearance in Water			na	ISBT 16.0	No color or turbidity

- Third-party ISBT Recovered CO2 Test Non-detect in all major impurities
- Yields Very Pure CO2 Better than Commercial PPB 6 13 PPB, vs 30 PPB
- Descriptive Analysis results using the Beer Flavor Map shows more flavor attributes detected in recovered CO2 product sample vs. standard CO2 sample
- Shelf Life Test- True to Target Sensory test shows recovered CO2 product sample retains true to brand attributes approximately 30 days longer than standard CO2 product sample

Commercial Install & Next Steps

Commercial Unit

- 99.99% Pure CO2
- CO2 Capture Rate Improvement
- Digital At-a-glance CO2 monitoring
- Easy to Maintain, Wet Rated

Next Steps

- Market Launch & Storytelling
- Drive Demand and Preference
- Retailer Showcase

Global Climate Goals by 2050 Carbon Capture Solves 13% 60 GT CO₂ Goals

City of Austin Net Zero Example

Brewers can address ~6%

Small Scale CO₂ Recovery Benefits

- ✓ Recovering CO₂ is Possible for Small Brewers
- ✓ Brewers Can Reduce or Eliminate CO₂ Costs
- ✓ Increase Reliability of CO₂
- ✓ Improved CO₂ Purity Can Improve Quality and Shelf Life
- ✓ Simple CO₂ Lab Tests Validate CO₂ Quality
- ✓ Improve Safety in Brewery
- ✓ Recovered CO₂ Can Drive Preference Among Consumers & Retailers
- ✓ Achieve Sustainability and Waste Reduction Goals

Q&A

- 1. What size do I need to be?
- 2. How big is the unit?
- 3. What does maintenance look like?
- 4. What is the energy use per hour?
- 5. What is the average ROI?
- 6. Does this reduce my carbon footprint?

Ask your questions

Go to website:

Sli.do Enter # D195

SIGN UP

www.earthlylabs.com

Copy of Presentation
Technical White Papers
CO2 ROI Audit
RSVP Pre-order List

CONTACT
Amy George / Subject: CBC
hello@earthlylabs.com

