CRAFT BREWERS CONFERENCE

& BrewExpo America

"THE OTHER CASCADE"

A journey into "nitro" beer and dispense

#CraftBrewersCon

ANNETTE MAY

Advanced Cicerone®

Faculty, Schoolcraft College Brewing & Distillation Technology Program (Detroit, MI)

amay@schoolcraft.edu

RYAN WAGNER

Certified Cicerone®

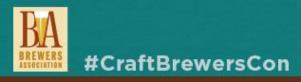
National Ambassador & Marketing Manager

Guinness Open Gate Brewery

rwagner@diageobeer.com

WHAT IS NITRO BEER?

"Nitro", or "nitrogenated" beer, is a beer carbonated with much lower levels of CO2 than a "typical" beer that also contains a small amount of dissolved nitrogen.


Nitro beer contains 1.1 – 1.7 v/v (approx 2.2 – 3.4 g/L) of CO2, plus a very small amount of dissolved N2

A "typical" beer contains 2.3 – 2.8 v/v (approx. 4.6 – 5.6 g/L) of CO2 (and no N2)

A HISTORY OF NITROGENATION

• DEVELOPED AT THE ST. JAMES'S GATE BREWERY IN DUBLIN BY GUINNESS MATHEMATICIAN/BREWER MICHAEL ASH

SOLVING THE "DRAUGHT PROBLEM"

CREATION OF THE "ASH CAN"

GUINNESS DRAUGHT STOUT DEBUTS IN 1959, BECOMING THE FIRST NITROGENATED BEER IN HISTORY

NITRO BEER TASTES DIFFERENT

WHY?

NITRO **BEER HAS** LESS DISSOLVED CO2

1. Less dissolved CO2 = Less carbonic <u>acid</u> = acid taste receptors on tongue register less "sourness".

BEER TASTES LESS "SHARP"

2. Less dissolved CO2 = Less stimulation of pain receptors on tongue. ("Chemesthesis")

• BEER FEELS LESS "TINGLY"

3. Less large CO2 bubbles in foam head.

 LESS AROMA COMPOUNDS DELIVERED TO NOSE

THE PROPERTIES OF N2 ITSELF

1. SMALLER BUBBLES!

- Science is complex and not completely understood
- N2 bubbles detach from nucleation points before reaching a large size
- pH of solution thought to influence bubble size (N2 beers are less acidic)
- Less bubble coalescence (a process by which two or more gas bubbles in a liquid collide and form one larger bubble)

SMALLER BUBBLES = THICKER FOAM = CREAMIER MOUTHFEEL

THE PROPERTIES OF N2 ITSELF

BA BREWERS #CraftBrewersCon

2. MORE STABLE FOAM

- A. "Disproportionation", or decaying foam
- Larger bubbles get bigger and burst, while smaller bubbles get smaller
- Affected by solubility of gas inside bubble
- CO2 is much more soluble than N2, it moves between bubbles faster, leading to a faster decaying head of foam

B. Smaller N2 bubbles result in slower drainage of liquid between bubbles

• Foam stability is related to the rate at which liquid drains from between bubbles

MORE STABLE FOAM = PROLONGS CREAMY MOUTHFEEL!

NITROGEN HAS BEEN **SHOWN TO SUPPRESS** SOME FLAVOR ATTRIBUTES

BITTERNESS HOP AROMA PERCEIVED SWEETNESS MAY INCREASE

- Consider which styles to dispense on nitro
- Consider adjusting in the brewhouse to compensate

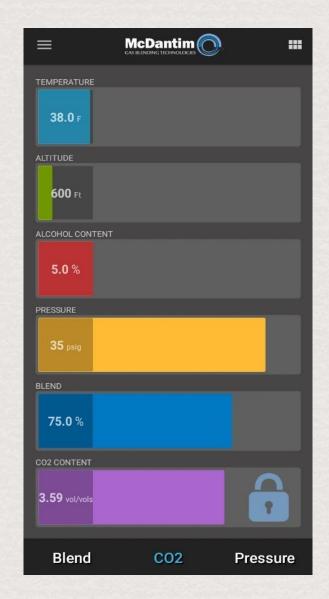
IN THE BREWERY

- NITROGEN IS ADDED AT HIGH
 PRESSURE AND AT COLD TEMPS
- BRITE TANKS WITH HIGHER PSI THRESHOLDS ARE NEEDED – 30 PSI
- CO2 VOLUMES ARE KEPT AROUND
 1.1, WITH A FINAL BLEND OF 25%
 CO2/75% NITROGEN
- BRITE TANKS ARE PURGED WITH NITROGEN RATHER THAN CO2, SO CO2 ISN'T FORCED INTO SOLUTION AT THE HIGHER PRESSURE

THE DISPENSE GAS BLEND

- Blend mimics % of each dissolved gas 25% CO2 & 75% N2
- Dispensing with this blend at target applied pressure keeps the small amount of dissolved N2 in solution
- Dispensing with this blend at target applied pressure keeps the CO2 in solution as the brewer intended
- Blend is specific to nitro beer only! Changes in the blend will affect CO2 carbonation levels

** Blended gas, at a blend specific to each system's carbonation levels and total resistance, is also used to push beer through long draw draught systems without overcarbonating the beer. Refer DQM Chapter 4 for more info.


CORRECT BLEND

=		
TEMPERATURE		
38.0 ⊧		
ALTITUDE		
600 Ft		
ALCOHOL CONTENT		
5.0 %		
PRESSURE		
35 psig		
BLEND		
25.0 %		
CO2 CONTENT		
1.20 vol/vols		
Blend	C02	Pressure

https://mcdantim.com/tools /calculator

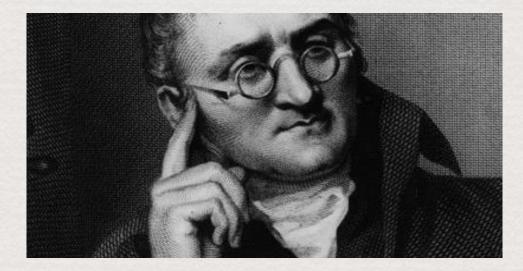
INCORRECT BLEND

BREWERS, #CraftBrewersCon

BA

CALCULATING TARGET APPLIED (SERVING) PRESSURE

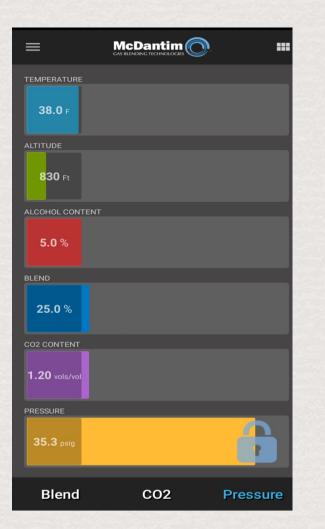
HENRY'S LAW – "The solubility of a specific gas in a liquid is directly proportional to the partial pressure of the same specific gas above the liquid"


DALTON'S LAW OF PARTIAL PRESSURES – "The total pressure exerted by a gaseous mixture is equal to the sum of each individual component in the mixture"

WHAT THIS MEANS – The amount of gas being applied into the headspace of the keg – at a given temperature & elevation – will determine what happens to the carbonation level in the beer

BLAME THESE GUYS!

DETERMINING THE TARGET APPLIED PRESSURE FOR NITRO BEER


- The correct applied pressure using 25/75 blend maintains the solubility of both CO2 & N2 – at the given temperature and elevation
- High pressure needed to dissolve N2 into beer during brewing process must maintain high applied pressure during dispense to keep N2 dissolved
- High applied pressure during dispense with 25/75 blend maintains CO2 in solution as the brewer intended
- Calculate target applied pressure using v/v (g/L) (provided by the brewer or distributor), temperature & elevation with equilibrium chart for blended gas, or a calculator such as McDantim EasyBlend

RANGE IS 30 – 38 PSI

*The high applied pressure required to keep both gases in solution needs to be balanced within the draught system to ensure a correct flow rate. The special faucet provides additional resistance to flow, balancing the system.

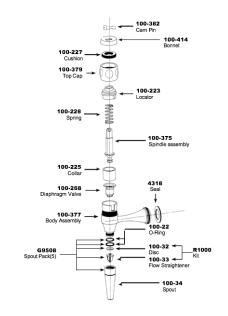
CORRECT APPLIED PRESSURE- Minneapolis

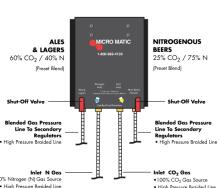
https://mcdantim.com/tools /calculator

CORRECT APPLIED PRESSURE - Denver

=		-
TEMPERATURE		
38.0 F		
ALTITUDE		
5279 Ft		
ALCOHOL CONTENT		
5.0 %		
BLEND		
25.0 %		
CO2 CONTENT		
1.20 vols/vol		
PRESSURE		
37.5 psig		6
Blend	C02	Pressure




EQUIPMENT NEEDED


- NITRO FAUCET
- NITRO SPOUT
- SECONDARY REGULATOR
- BLENDED GAS

BREWERS #CraftBrewersCon

NITROGENATED BEERS ARE THE "CANARY IN THE COAL MINE"

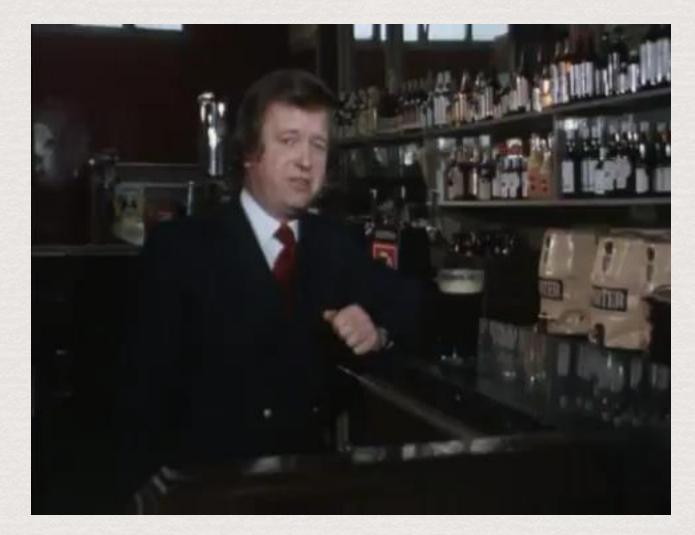
LINE CLEANING – NO CHANGES

CLEANING AND MAINTENANCE

FAUCET CLEANING - NO CHANGES

SPOUT CLEANING

REMOVED AT THE END OF SERVICE, CLEANED, DETAILED, DRIED, AND RETURNED TO THE FAUCET


THE POUR

- TRADITIONALLY SERVED
 USING A TWO-PART
 PROCESS, DUE TO A
 UNIQUE BIT OF HISTORY.
- GLASSWARE SHAPE PLAYS A KEY ROLE IN THE "SURGE AND SETTLE" PROCESS. FLAT BOTTOMED GLASSWARE IS BEST.
- 45 DEGREE ANGLE TO THE TAP, LETTING THE GAS DO THE WORK.

THE STORY OF THE TWO-PART POUR

THE TWO PART POUR IN ACTION

FURTHER RESOURCES

- Brewers Association Draught Quality Manual, 4th edition
- Brewers Association Resource Hub Draught Beer

https://www.brewersassociation.org/resource-hub/draught-beer/

Brewers Association Educational Resources – Facts about Serving Nitrogenated beer

https://www.brewersassociation.org/educational-publications/a-simple-guide-to-serving-betternitrogenated-beer/

Cicerone Certification Program "Road to Cicerone" Keeping and Serving course

https://www.cicerone.org/us-en/products/road-to-cicerone-keeping-serving-beer-course-0

McDantim calculators for draught beer dispense

https://mcdantim.com/tools/calculator

- ASBC Handbook Series Practical Guides for Beer Quality Foam, by Charles Bamforth
- CBC 2020 Chart Industries (sponsored) webinar Nitro Brewing using a Chart doser <u>https://vimeo.com/421015323/320988ab80</u>

THANK YOU! QUESTIONS?

amay@schoolcraft.edu rwagner@diageobeer.com

Please fill in the survey for this seminar! You'll find it in the mobile app with the seminar.

